京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的传统企业互联网化
继乌镇世界互联网大会后,《2015中国互联网经济论坛》在北京如期举办,大会围绕“企业的价值主张”,邀请业内领袖人物和资深专家,深入探究互联网新业态下,公司的创新理念、模式及其理想、愿景,兼论互联网的技术化、工具化、普遍化、人文化与证券化。同时,就目前行业普遍关注的人工智能化、不同产业间的合并和整合、转型阶段的驱动力等问题给予解答。瑞金麟集团联合创始人、云像数字CEO 安士辉受邀出席,在主论坛现场分享《大数据时代下的传统企业互联网化探索》的主题演讲。
中国传统经济和互联网的结合,在过去两三年发生了根本性的变化。特别从2013年开始大数据的兴起发生了根本性的变化。2013年之前互联网在中国更多的体现是以信息,以人的互联互通为核心。从2013年开始互联网更多的体现就是跟传统结合,这里产生了互联网医疗、互联网金融、互联网地产、互联网出行等,跨界之间的融合开始加速,实际上边界已经开始消失。对行业现状的剖析,安士辉归纳为三个关键点:1、2014年后传统力量崛起,产业互联网和金融结合的创新模式越发紧密;2、创新速度加快,各行业窗口期再缩短,以天衡量创新速度; 3、企业互联网化结合最大的难点不是商业模式和技术手段,而是业务管理更迭、组织裂变和人才自发光的匹配性,因为这是动刀子,职业经理人也不愿意去冒险。
“基于这些,我们认为目前传统企业跟互联网结合最大的几个点,更多的是消费的场景,从线上线下开始融合,然后跟碎片化和场景化结合在一起。在盈利模式上,企业需要从制造利润向服务利润,从服务利润向数据利润,向平台利润转型。”安士辉表示,传统商业模式已不再适用,需要重新定义企业的资产和商业模式。在颠覆的时代下跟互联网结合,形成跨界的团队,最终通过三个步骤进行互联网化路径的延伸:一是传统企业内部价值链的碎片化,就是数据化,企业可以用信息流、物流、资金流,可以用数据完全进行延伸;二是在数据的基础上跟企业价值融合,形成片断化的优化;三是在此基础之上,有些传统企业升级为平台化企业。
关于传统企业如何快速地适应、转型数字化,安士辉认为,传统企业互联网化的改造,最难的不是方法论,最难的不是技术支撑,最难的其实是来自于企业内部。没有传统的产业,只有传统企业,没有传统的企业,只有传统的老板。“我们公司做六年多的时间,我们几乎每周快速的更迭和创新,如何利用大数据来支撑你的业务创新,创新和变化是永恒的主题,最大的不变就是变化。” 安士辉分享道。
在过去的一年中,安士辉带领云像数字利用自身技术,将零散的信息充分整合,推动了企业商业模式的创新和产业链的升级,为我国互联网企业与传统企业互利共赢做出贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10