
大数据时代 “孟母三迁”的故事已OUT了
“孟母三迁”的故事,相信很多人都知道,这是每个孩子在童年时代都听过的故事,也是每位母亲都熟悉的教子素材。
孟母择邻来自汉代刘向《列女传·邹孟轲母》:“邹孟轲之母也,号孟母。其舍近墓,孟子之少也,嬉游为墓间之事,踊跃筑埋。孟母曰:‘此非吾所以居处子。’乃去。舍市傍,其嬉戏为贾人炫卖之事。孟母又曰:‘此非吾所以居处子也。’复徙舍学宫之傍。其嬉游乃设俎豆揖让进退。孟母曰:‘真可以居吾子矣。’遂居之。及孟子长,学六艺,卒成大儒之名。”后来这个故事编入《三字经》:“昔孟母,择邻处。”以此赞赏圣人成长的道路——但稍懂得孔孟成长经历的人都知道,孔子和孟子的经历是差不多的,都是3岁丧父,母仪教诲。
从孟子的第一个居处来看,正是孔子在父亲去世后居住的环境,当时,孔子的母亲颜征在抱着年幼的他搬出孔门,移居贫贱者的聚居区“阙里”,这是个包括祭祀、脚夫等五行八作俱全的杂居之所。正是在这里,孔子学着大人祭天祭祖,“为儿嬉戏,常陈俎豆,设礼容”。孔子在母亲教导下,努力学习做人与生活的本领,故孔子自述:“吾少也贱,故多能鄙事。”孔子也曾做过丧礼上为死者执绋吹打的吹鼓手,逐渐学会主持丧礼。先秦将执办丧礼的司仪称为傧相。傧相在《周礼》中称为“胥”。“胥”又作“需”,“需”“儒”相通。正是这种环境滋生了孔子的少年理想,向着儒家学说励志勤学。
再看孟母第二次搬家到闹市区,孟子“嬉戏为贾人炫卖之事”。且莫说孟子并非商贾,即便是,与学习儒家经典也不是冲突的。子贡就是卫国商人,后来成为孔门贤人。往近的说,沈阳五爱市场是国际上出名的商业基地,但择校到七中去的学生源源不断,这似乎与孟母的主张相悖。
孟母最后安居之处,似乎重复着孔子的童年兴趣,而与国子之学“礼坏乐崩”大相径庭。
看来,孟子成才与孟母择邻似乎关系不大。而按照孟母择邻的逻辑,范仲淹应成为僧侣——他从小就在醴泉寺寄宿读书。
话说回来,世异则事异,事异则备变。如今已是大数据时代,“云”(网络)所引发的教育革命已悄然到来,锋芒所向,直接针对工业文明时代的传统教育。传统学校映射的是机器批量生产模式:固定学制、班级、秧田式的课桌椅、统一的教材、按课表编排的教学进程、铃声、教师评语、考试选拔(淘汰)制。而如今的教育将强调个性化教育,使择校得不偿失。
——少把精力搭在路上,为了走更远的路。
大数据背景下的学习解放了人们原有的天分,使原本处于基因状态的学习能力,在云计算的生境下生长出来。越来越少的课堂,越来越多的云资源;越来越少的讲授,越来越多的交互……云教育资源极其丰富,学习可以在任何场合发生。通过对大数据技术的应用,将有利于个性化学习,标准化的学习内容由学习者自组织学习取而代之,学校和教育者更多是关注学习者个性化培养,教学由知识灌输转变为启发助学。
——少在班级和年部攀比,为了登攀更高的山峰。
学习是由他组织到自组织的行为,但作为由学习决定的学校教育全然成为他组织行为,将学习者引向囧途。比尔·盖茨曾预言,在21世纪,“我们可以在互联网上找到质量最佳的授课内容,这些内容比任何单一的学校都要强。无论公众接受的教育程度如何,都应对互联网的各种资源加以利用。”
——少对学校有更多的依赖,为了对自己有更大的信心。
几千年来,教育者试图花费巨大的时间和精力所做的工作是:将提炼过的教师的思维逻辑或者书本的思维逻辑连同知识容量一起拷贝到学生的大脑中。这种标准化、规范化的教育,只能保证濡化,即代际的文化传承,而丢弃了涵化,即横向的交流。而在云计算的今天,教育的真谛不是技术方法的教化,而是对学习者的支持与服务。而云服务乃是学习的最大资源。
在当前的大数据时代下,“孟母三迁”的故事已经OUT了,这是因为,大数据正在推动教育向个性化、高层次方向发展,其全部奥秘只不过是学习、教学、教育、学生、教师、学校等概念的重构而已。就是说,当父母的要在大数据面前反思自己,将择校变成择教,稳妥地引领孩子多种能力和智慧的发展,这是家庭教育成功的关键。向孟母那种教育方式,已经不适合现代的孩子了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08