京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析切勿纸上谈兵!
“互联网+”引出了大数据问题,针对数据来说,它和水、电资源一样,不神秘但却威力巨大。一百年前能够用上电能的企业是非常了不起的,但今天,没有人会以能够用上电能而引以为傲,因为电——无所不在。同理,数据——伴你左右。
由于互联网的大肆蔓延,随着产生出成千上万、成万上亿且各式各样数据,且这个数据的生产模式还在不断运行、不断改变。我们刚体会出互联网的便利,就被互联网带来的数据巨量化惊到了!大数据是利还是弊?有人说它无所不能,也有人说它只是一场泡沫演出。
如果大数据是泡沫一触就破,但如果不是呢?
为什么说大数据会是泡沫呢?现实有一种说法:大数据可以让你获得所需要的一切,这些对于大数据过多的炒作,到底是真实的还是虚构的?如果你认为这些话是鼓吹大数据的做法,是不能实现的虚假宣传,那么大数据会是一场泡沫演出,一触就破。但如果你相信大数据将会主导未来,并非一场泡沫的话,请你不要停留在大数据的泡沫问题上,落实与变革才是数据分析中的高级之处。
说到泡沫——IT泡沫,我们真正意义上经历过互联网泡沫,大家熟知从1999年到2000年,当时出现了大规模的互联网泡沫。其泡沫破裂之后,众多企业经济受损。然而当时的说法是,互联网本身并非缺少价值,而是我们认为这种价值的获得太过容易、太过迅速,这样才造成了当时的互联网泡沫。也就是说,在当时,普遍认同互联网泡沫的危害是极大的。然而看一看现如今,互联网已经深入到方方面面,以至于对工作、生活都带来了非常深远的影响和改变。这样天地之差的感官与受益,当初的一场泡沫难道没有意义吗?
Gartner公司研究,大数据高级分析已经成为企业当下必须优先考虑的要务。
目前大数据也处于上述这种情况,几年之后,只要大数据一旦可以带来非常好的影响。现在这种泡沫的说法,自然也就一触就破。
在过去,很多企业设立了单独的大数据部门,或者将其分布于不同的分公司中。然而这些数据却分散在企业各个不同的系统里面,并且还由不同的人员加以管理。这与大数据分析厂商Teradata公司所提出的企业级数据仓库存在差异,所谓企业级数据仓库是将数据源整合在一起,深入挖掘企业内部的数据价值。
这里要特别强调的是,我们是否应该避免过去传统数据管理的问题,即要把数据统一集中在一起?在思考这个问题时,我们应该先对大数据的变化做到了如指掌。
数据分析的变革——Teradata天睿公司首席分析官Bill Franks
如今,我们面临数据分析的变革,这非常类似于传统的工业革命。在过去,产品的生产和购买方式都是手工作坊式的。思考过去,一方面因为它是手工制作的,所以不可能得到量产,也不可能得到扩展。另一方面,手工制作下的每一件产品也不可能做到完全一致。而工业革命的到来,彻头彻尾地改变了它,即实现了产品的大规模生产。然而这并不是说手工作坊不重要,手工作坊价值在于定制化的价值,大规模生产中恰恰舍掉了这一部分。
同比大数据分析模式,手工作坊的方式是数据分析的所在,即通过“手工定制”的办法,来针对企业具体的问题,做一些有关大数据的分析。其中,大数据分析厂商通过自己的技术特点为企业提供一些定制的解决方案。
Teradata天睿公司首席分析官Bill Franks
但面对千变万化的市场变革下,针对大数据高级分析,Teradata天睿公司首席分析官Bill Franks提出了企业首要面对的问题:数据的高价值与低价值,对于存在高价值的大数据源,我们需要定制化的或者深层的分析能力。但是对于低价值的大数据资源,我们可不可以通过部署在具体的业务流程中、对大数据进行快速、低成本的分析解决方案?对此,Teradata公司在大数据高级分析中提出了非常落地的解决方案,即可以根据企业所需,在技术里、业务流程里嵌入数据分析,实现自动化地数据分析处理,这样一来,我们不再需要太多的人工参与就可以进行数据分析。在衡量成本与支出的大数据天平上,采用业务驱动的大数据高级分析,可谓是一场数据分析的“工业革命”。
大数据厂商的意义何在?
我们怎么能够利用这些大数据,让其能够带来更多的价值,并利用它做更多的事情呢?针对大数据的挖掘工作来说,从大数据分析厂商中找到相关的工具、技术,以及专业服务应该是我们着重关注的地方。
为此,Teradata公司提出了“三个能够”,可以作为我们衡量的标尺:
大数据分析厂商应该能够挖掘企业业务的问题所在,帮助企业找到具体方法,并提供具体的工具和技术,更大地发挥大数据的作用;
能够帮助企业发现问题,助力企业部署大数据。从业务的部署来说,帮助企业通过在业务当中实现大数据价值;
能够在前端帮助企业发现数据的价值,同时在后台可以进行跟踪,给它进行量化,发现数据价值所在。
既然标尺已经确立,市场需要的大数据分析厂商应该是既能了解企业自身的行业知识,同时又具有专业的大数据分析能力。
在日益变化的市场环境下,Teradata提出的大数据高级分析中,还特别针对新的数据源,包括传感器数据源、关系型数据、文本型数据等,提出了更高的要求,能够作出预测性的维护工作和寻找到新的数据源。有且仅有这样的高级分析,才是我们应该选择的大数据高级分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22