
基于技能的改善数据科学实践的方法
在当今的大数据时代,利用数据科学理论进行数据分析起着越来越重要的作用。探讨不同数据技巧类型和熟练程度对相关项目有着怎样的影响也开始具有重要意义。近日,AnalyticsWeek的首席研究员、Bussiness Over Broadway的总裁Bob Hayes博士就公开了研究数据分析项目成功所必需技能的相关结果。Bob所提出的基于技能的数据科学驱动力矩阵方法,可以指出最能改善数据科学实践的若干技能。
首先,Bob在AnalyticsWeek的研究包含了很多向数据专家提出的,有关技能、工作角色和教育水平等有关的问题调查。该调查过程针对5个技能领域(包括商业、技术、编程、数学和建模以及统计)的25个数据技能进行,将其熟练程度划分为了6个等级:完全不知道(0分)、略知(20分)、新手(40)、熟练(60分)、非常熟练(80分)和专家(100分)。这些不同的等级就代表了数据专家给予帮助或需要接受帮助的能力水平。其中,“熟练”表示刚好可以成功完成相关任务,为某个数据技能所能接受的最小等级。“熟练”以下的等级表示完成任务还需要帮助,等级越低需要的帮助越多;而“熟练”以上的等级则表示给予别人帮助的能力,等级越高给予的帮助可以更多。
Bob列出了4中不同工作角色对于25种不同数据技能的熟练程度。从上图可以看出,不同领域的专家对其领域内技能的掌握更加熟练。然而,即使是数据专家对于某些技能的掌握程度也达不到“熟练”的程度。例如,上图中浅黄色和浅红色区域都在60分以下。这些技能包括非结构化数据、NLP、机器学习、大数据和分布式数据、云管理、前端编程、优化、概率图模型以及算法和贝叶斯统计。而且,针对以下9种技能,只有一种类型的专家能够达到熟练程度——产品设计、商业开发、预算编制、数据库管理、后端编程、数据管理、数学、统计/统计建模以及科学/科学方法。
并非所有的数据技能都同等重要
接下来,Bob继续探讨了不同数据技能的重要性。为此,AnalyticsWeek的研究调查了不同数据专家对其分析项目结果的满意程度(也表示项目的成功程度):从0分到10分,其中0分表示极度不满意,10分表示极度满意。
对于每一种数据技能,Bob都将数据专家的熟练程度和项目的满意度进行了关联。下表就列出了4种工作角色的技能关联情况。表中关联度越高的技能就表示该技能对项目成功的重要性越高。而表中上半部分的技能相比于下半部分的技能对于项目结果更加重要。从表中可以看出,商业管理者和研究者的数据技能和项目结果的满意度关联度最高(平均r=0.30),而开发人员和创新人员的关联度只有0.18。此外,四种工作角色中不同数据技能之间的平均关联度只有0.01,表明对于一种数据专家是必须的数据技能对于其他数据专家未必是必须的。
基于熟练程度和关联度的结果,Bob绘出了数据科学驱动力矩阵(Data Science Driver Matrix,DSDM)的示意图。其中,x轴代表所有数据技能的熟练程度,y轴代表技能与项目结果的关联度,而原点则分别对于熟练程度的60分和关联度的0.30。
在DSDM中,每一种数据技能都会落在其中的一个象限中。由此,这种技能所代表的含义也就不同。
Bob针对商业管理者、研究者、开发人员和创新人员4中角色分别创建了DSDM,并主要关注落在第一象限的技能。
商业管理者对于商业管理者而言,第一象限中的技能包括统计学/统计建模、数据挖掘、科学/科学方法、大数据和分布式数据、机器学习、贝叶斯统计、优化、非结构化数据、结构化数据以及算法。而没有任何技能落在第二象限。
开发人员对于开发人员,只有系统管理和数据挖掘两种技能落在第一象限。绝大部分技能都落在第四象限。
创新人员对于创新人员,共有数学、数据挖掘、商业开发、概率图模型和优化等五种技能落在第一象限。而绝大部分技能都落在第四象限。
研究者对于研究者,共有算法、大数据和分布式数据、数据管理、产品设计、机器学习和贝叶斯统计等五种技能落在第一象限。而落在第二象限的技能却很少。
从以上的研究中,Bob得到以下结论:
除此之外,Bob还提出团队合作对于项目成功也有着非凡的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18