京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的五点思考
大数据不在乎体量有多少,而是背后用它的那个大脑。实则大众对大数据依然存在不少误解。刘得寰教授在微博上发表了其对大数据的五点思考(后续可能还有更新),对近期大数据被大众捧为瑰宝的做法提出了自己不同观点:
任何一个网站的数据都是人们互联网行为数据的很小的一个子集,无论这个子集多么全面,分析多么深入,都是子集,不是全集。对于企业来讲,竞争对手的数据价值远远超过自己网站数据的价值,从量级上,对于所有公司都一样,自己拥有的数据远远小于全集数据。看起来的全数据恰恰是残缺数据。
数据量的大幅增加会造成结果的不准确,来源不同的信息混杂会加大数据的混乱程度。研究发现:巨量数据集和细颗粒度的测量会导致出现“错误发现”的风险增加。那种认为“假设、检验、验证的科学方法已经过时”的论调,正是大数据时代的混乱与迷茫,人们索性拥抱凯文凯利所称的混乱。
互联网用户的基本特征、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户的基本行为规律。体系完整是所有分析性工作的第一步,完整的框架甚至胜过高深的模型。人类的认识最大的危险是不顾后果的运用局部知识。如果只关心自己网站数据,其分析基础必然是断裂数据。
现在谈到大数据,基本有四个混乱观念:第一,大数据是全数据,忽视甚至蔑视抽样;第二,连续数据就是大数据;第三,数据量级大是大数据;第四,数据量大好于量小。对应的是:抽样数据只要抽样合理,结论准确;连续只是一个数据结构;大量级的噪音会得出错误结论;大小与价值关系不大。
大数据不是新事物,天气、地震、量子物理、基因、医学等都是,借鉴他们的方法有益。他们用抽样调查。互联网数据挖掘方法论也如此,不同的是更难,因为人的复杂性。既然是关于人的研究就需应用所有研究人的方法梳理大数据。只要懂编程、懂调动数据的人就可以做大数据挖掘的说法是谬误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20