京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据解决城市拥堵
随着人口的增长,公交、火车以及其他的运输设备将变的越来越拥堵。公共运输部门从调查、摄像机中获取定性数据描述拥堵,城市引擎(Urban Engines)公司却相信通过智能算法和大数据系统可以高效解决拥堵问题。
Urban Engines从谷歌风投等公司获得了大量融资,金额未作披露。公司创始人包括Balaji Prabhakar、Deepak Merugu和Google的前设计师Shiva Shivakumar和Giao Nguyen。Shivakumar曾是谷歌在2001年至2010年期间的技术总监和出色的企业家,并且帮助建造了 Adsense、Search Appliances和Cloud Apps等项目。Prabhakar是斯坦福大学社交网络研究中心教授,是让社交网络更智能、更具规模、更有效的研究发起人。
Urban Engines源自于Prabhakar关于城市拥堵的研究和对供需关系的理解,人们如何运用公共交通以及如何从高峰到非高峰期转换人们的行为。Prabhakar和Shivakumar发明了SaaS,可以用来监测交通状况。
Urban Engines软件使用的数据来自城市运输系统,通过空间分析重现城市运输系统。软件还能帮助实施奖励计划,以奖励的方式增加增加公共交通参与,缓解高峰期拥堵。
这些数据来源于一种简单的标记方式:当人们刷卡进出火车站或者汽车站时,铁路和公路系统会收集数据作支付结算,但不作交通分析。Urban Engines将量化这些数据,然后分析每条公交和火车线路的拥堵程度、等待时间、历史数据等讯息。
Prabhakar将这视作“群体感应”,通过感应人们的刷卡行为来确定他们所处位置,这听起来有些复杂,事实上也是如此,团队成员对算法和技术进行了多年的研究 。Shivakumar表示:“运输部门知道火车的具体位置,却不知道人在哪儿。”
Urban Engines软件获交通部门批准,一旦部署到云端,它就能知道哪一站上来了多少乘客,哪一列火车已经不堪重负等信息。更有趣的是交通部门可以与历史数据进行比较,获知应该增加哪些线路或者增加哪条线路的公交车数量。
Urban Engines已经进行过一些测试。通过与世界银行合作,巴西圣保罗正在使用Urban Engines的解决方案改善交通系统,新加坡使用Urban Engines缓解高峰期的交通压力,而华盛顿特区已经将其完全应用于铁路系统。
Urban Engines表示,他们想要让世界上100多个人口众多的城市的运输变得更有效,公司的系统会发挥很大作用。通过这个软件,可以理解交通系统的运行,为决策提供参考,从而节约时间和金钱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08