京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据解决城市拥堵
随着人口的增长,公交、火车以及其他的运输设备将变的越来越拥堵。公共运输部门从调查、摄像机中获取定性数据描述拥堵,城市引擎(Urban Engines)公司却相信通过智能算法和大数据系统可以高效解决拥堵问题。
Urban Engines从谷歌风投等公司获得了大量融资,金额未作披露。公司创始人包括Balaji Prabhakar、Deepak Merugu和Google的前设计师Shiva Shivakumar和Giao Nguyen。Shivakumar曾是谷歌在2001年至2010年期间的技术总监和出色的企业家,并且帮助建造了 Adsense、Search Appliances和Cloud Apps等项目。Prabhakar是斯坦福大学社交网络研究中心教授,是让社交网络更智能、更具规模、更有效的研究发起人。
Urban Engines源自于Prabhakar关于城市拥堵的研究和对供需关系的理解,人们如何运用公共交通以及如何从高峰到非高峰期转换人们的行为。Prabhakar和Shivakumar发明了SaaS,可以用来监测交通状况。
Urban Engines软件使用的数据来自城市运输系统,通过空间分析重现城市运输系统。软件还能帮助实施奖励计划,以奖励的方式增加增加公共交通参与,缓解高峰期拥堵。
这些数据来源于一种简单的标记方式:当人们刷卡进出火车站或者汽车站时,铁路和公路系统会收集数据作支付结算,但不作交通分析。Urban Engines将量化这些数据,然后分析每条公交和火车线路的拥堵程度、等待时间、历史数据等讯息。
Prabhakar将这视作“群体感应”,通过感应人们的刷卡行为来确定他们所处位置,这听起来有些复杂,事实上也是如此,团队成员对算法和技术进行了多年的研究 。Shivakumar表示:“运输部门知道火车的具体位置,却不知道人在哪儿。”
Urban Engines软件获交通部门批准,一旦部署到云端,它就能知道哪一站上来了多少乘客,哪一列火车已经不堪重负等信息。更有趣的是交通部门可以与历史数据进行比较,获知应该增加哪些线路或者增加哪条线路的公交车数量。
Urban Engines已经进行过一些测试。通过与世界银行合作,巴西圣保罗正在使用Urban Engines的解决方案改善交通系统,新加坡使用Urban Engines缓解高峰期的交通压力,而华盛顿特区已经将其完全应用于铁路系统。
Urban Engines表示,他们想要让世界上100多个人口众多的城市的运输变得更有效,公司的系统会发挥很大作用。通过这个软件,可以理解交通系统的运行,为决策提供参考,从而节约时间和金钱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26