京公网安备 11010802034615号
经营许可证编号:京B2-20210330
那么多大数据公司“买数据” 怎么保护数据隐私?
数据是什么?是金子,也就是钱啊!
最近统计来看,全国已经有三百多家大数据公司,但在大数据发展初期这个情况下,国内大数据交易的现状是:供不应求!所以各种形式的数据交易公司都出来“卖数据”赚钱了;
还有个趋势是,无论是国内、国外,大数据集中在大厂中,更可气的是还通过兼并使数据公司越来越少,构成商业壁垒。so,数据聚集在一小部分企业手中,创业公司纵使有好的想法,拿不到足够大的数据也无济于事。这么看来,数据就是命啊!
所以,在这几天举办的第九届中国大数据技术大会上,也特意开了数据市场及交易分论坛,给大家答疑解惑。在此摘一些观点来分享。
其实,国内大数据交易的现状除了供不应求,还非常不均衡。
具体说来,数据堂副总裁肖永红介绍了数据的四个特点:
第一个特点是头重脚轻。互联网企业和高科技企业在大数据产业里面起领跑作用。因为他们有大量的用户数据,比如百度,有大量用户搜索数据;比如阿里,掌握了全国海量的电商行为数据,比如腾讯,也掌握了全部的社交数据。有了这些数据以后,就可以“携数据以令诸侯”。(这个重要系醒表现在:阿里已经在和一些地方政府、甚至和国家层面合作;现在可以根据每年双十一,或者淘宝的交易量,反过来推测中国经济运行的状况。)
第二个特点,目前大数据产业分布偏重在应用环节。
第三特点,应用领域行业分布还不够广,集中于电商行业,在传统行业非常少。
第四特点,缺乏综合性的数据聚合流通平台。虽然这一年两年内冒出了很多,但是远远不够。
当然,了解了数据特点,就能更好地寻找数据源。那么数据都在哪里,如何收集?
对应上文所说,首先是互联网企业。很多数据都是在各个行业领域的IDC或者数据中心的服务器上面;
其次,在电信运营商领域。大家已经意识到,运营商的用户行为数据特别是移动用户的行为数据,非常有价值;
并且,科技部和财政部在四五年前,提出了一个全国科学数据共享基础工程,围绕人口健康、交通科学,以及地理、地球、气象等方面,已经做了很多科研和科学领域的数据共享平台;
针对传统行业数据收集,可以利用众包的形式,以及利用传感器记录、采集线下分散的数据;
另外最近还有一个趋势,很多高校和科研机构也在收集大量的数据,因为他们做项目也需要大量的数据支撑;
另一方面,现在很多个人、公司都在找数据,也愿意花钱买,所以无论是官方的还是企业的数据交易市场,在今年格外火爆。
因此,另外一块就是数据源变现的形式。这几年商业数据或者政府大数据变现项目也有大量数据。
比如官方的,如北京市政务数据资源网、九次方在“中国数都”贵阳筹建“贵阳大数据交易所”、中关村“数海”大数据交易平台、北京软交所旗下“北京大数据交易服务平台”,以及各地风起云涌的大数据交易平台、交易所,如亚信和武汉市政府长江大数据交易所,都是开放了一些官方数据,由政府背书,但还是没有配套法律规范。
企业层面,有登上新三板的数据堂,以及百度API Store 聚合平台、聚合数据。
但是,数据交易需求虽然很大,但是毕竟没有配套法律规范。因此,在交易流通中存在很多问题。中国信息通信研究院高级工程师韩涵总结,数据流通交易面临两个极端:一是黑市交易无序流动,二是数据冻结无法流动。
首先,来看看数据交易流程中会遇到什么问题?
来自亚信数据的龚静介绍,总结来说,包括四个方面:寻找成本,需要很快的去找到对方;实施成本,数据流通过程中涉及到很多协议、数据格式,需要方便的工具来做协议的转换;信任成本,需要监管渠道,中介不会窃取数据;外部成本,即隐私数据要得到保护。
因此,为了规范交易流程来保护各方利益,目前数据流程模型,大体来说有三种:
第一种是最简单的,数据供需双方直接进行交互。但流通中四个成本都非常高。
第二种,加入数据中介。寻找成本变低了,但信任成本增高了。
第三种流通模型,是再引入一个产权人的角色。可以保障第三方利益,降低外部成本。
所以,每一方的利益都能够得到保障,数据流动才能真正在全社会流转起来。
其次,针对数据壁垒问题,怎么破?
最近有一个词汇比较流行——数据的民主化,像政治上的民主,能够做到数据的民主,用数据激发创新。还有共享经济,包括对数据价值的共享,亚信也提出了一个想法:数据去中心化。
意思是,在数据流动的过程当中,整个数据不会经过任何一方,而是直接在数据流动的参与方之间进行流动。这种数据去中心化的数据流通方式,和P2P下载、电话交换网的模式类似:参与方的认证、计费、公证的环节,可以由数据中介平台来完成。完成之后,在数据需求方和数据提供方之间进行数据的流动。
此外,完善的流程还需要保护数据隐私。
因此,平台还要使数据可用不可见。数据双方各把加密之后的数据放到这个数据交易的中介平台上来,在这个平台上进行碰撞,碰撞之后,把这个结果进行解密,返还给双方,然后再把数据销毁;数据版权要保护起来。当有侵犯到你版权的数据在市场上流动时候,你可以通过平台来发现它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17