京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能否在建筑行业落地开花
毋庸置疑,大数据是当下最火的IT词汇。目前,全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化,而如何掘金大数据是所有个人、企业和国家的机遇和挑战。事实上,从城市交通到空气质量,从建筑设计到影视制作,大数据分析应用已经渗透到我们生活的方方面面,并将改变人类社会的命运。大数据就在脚下,但大数据能否在建筑行业落地开花呢?
“现在有很多国外公司想进入国内做建筑行业的信息化,目前国内做得很有规模、很深入的公司也比较少,但是有很多企业也都想借大数据的和云计算这些新技术变革的机会努力做一些创新。”行业分析师表示。
不过,据分析,对于建筑行业的大数据挖掘来说,存在天然的行业壁垒,首先是数据维度比较复杂,简单来看,既有建筑类的数据:建筑造价类数据、建筑结构类数据、建筑施工工艺类数据、建筑材料类数据,还有管理类数据;其次是中国的建筑的法律法规和对专业的要求跟国外不一样,中国的一个特点是各个省市的建筑行业法律法规都不一样。在这种情况下,建筑行业的大数据挖掘成了一个高门槛的行业。
虽然入门很难,但是对行业的改变非常之大。以传统的建筑行业造价咨询公司为例,如果公司有100个造价人员,这个规模的公司会至少有两个人专门做询价,也就是找材料价格。而一个咨询公司的咨询师的年成本大概是30万元,两个人就是60万元。而从收集材料厂商数据的成本来看,收集一个厂商的信息,大约一年需要140元钱,而目前国内的建筑材料的生产厂商79万家,如果要把这79万家的材料信息收集回来,这个成本是巨大的。“所以针对这个情况,广联达公司努力做的事情就是把这些生产厂商的数据收集回来,结合一系列机器学习、数学建模、自然语言处理、搜索引擎等前沿技术,把信息精细加工以后,提供给用户。首先在人力成本上节省很多,这是第一步;第二步是在收集信息以后,做招标、投标和审核的时候,需要做预算,这样又提供了一个工具可以把做过精加工的数据直接载入,方便进行各种调度。”付永晖说。
据悉,广联达近期还发布的工程指标信息平台,就展示了广联达在造价工程领域朝着大数据的方向发展的研究成果。该平台从用户体验的角度,把指标信息服务产品分为三部分,即指标网站、指标助手和信息杂志。指标网站涵盖了近2000个工程的指标数据,其中北京地区工程超300个,覆盖住宅、办公、酒店等96个项目类型,同时,数据每天都在持续更新,以保证用户能够得到最新最全的指标数据。指标助手帮助客户快速分析出指标(量、价),并能与云指标库的参考区间做对比,达到快速检查的目的。信息杂志每季度出一期,包含不常见的精品指标,配上行业先进的指标应用文章,为用户提供专业、周到的指标数据服务。
“如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝藏的利器。没有强大的计算能力,数据宝藏终究是镜中花;没有数据挖掘技术的积淀,云计算也只能是杀鸡用的宰牛刀(微博 博客)。”对广联达来说,“大数据=海量数据 分析软件 挖掘过程”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16