
电子商务在大数据时代下的“包容性增长”
随着企业处理的数据量越来越大,数据处理工具的智能化程度越来越高,处理速度越来越快,价格也越来越实惠。大数据分析不仅仅是一种趋势,而是许多大型电子商务公司必不可少的一项工作内容。在大数据时代的背景下,灵活运用各项数据分析手段提炼商业智能已经成为电子商务企业的一项必修课。
所谓的大数据,是需要跨视角、跨媒介、跨行业的海量数据,也可以理解为数据的收集方法。当数据的规模和丰富度达到一定程度,大家才开始提出大数据的概念。那么,电商大数据现状如何?
电子商务在大数据时代下的“包容性增长”
中国电子商务受益于良好的市场环境,政策的扶持,迎来了井喷时代,生态链亦初具雏形。2010年5月21日,第四届APEC电子商务工商联盟论坛就打造电子商务生态产业链、电子商务政策环境与发展趋势、e时代消费、三网合一、无线领域的商业机会、电子商务的竞争格局与投资转型等主题展开讨论。电子商务生态链作为一种新型交易工具,虽然具有平台效应,但其发挥积极外溢效应将有一定前提条件、约束机制。这也要求政府在促进电子商务发展的同时,为电子商务生态链增长提供支持的同时;另外也需要考虑到数字鸿沟可能产生的负面影响。政府应从包容性增长的角度对观察电子商务生态链对区域经济增长、区域福利的效果。
“包容性增长”这一概念最早由亚洲开发银行在2007年首次提出。它的原始意义在于“有效的包容性增长战略需集中于能创造出生产性就业岗位的高增长、能确保机遇平等的社会包容性以及能减少风险,并能给最弱势群体带来缓冲的社会安全网。”最终目的是把经济发展成果最大限度地让普通民众来受益。包容性增长即为倡导机会平等的增长。包容性增长最基本的含义是公平合理地分享经济增长。它涉及平等与公平的问题,包括可衡量的标准和更多的无形因素。
政府应该积极鼓励电子商务运营商开发更多适合减少贫困的业务,促使这些业务更好融入到和谐社会建设中。总之政府、企业、公众应共同探讨如何在大数据时代借助电子商务生态链惠及贫困人口,从而缓解数字鸿沟以及负面影响。
电商从大数据里谋发展必须具备要素
驾驭大数据
数据集往往非常庞大,很难用传统的数据库管理工具进行处理,截至2012年,数据集由几十兆字节至数拍字节的数据组成。这些数据包括访问网页、登陆、在线交易等等。目前数据集的规模在不断增大。企业应使用相应工具对数据进行压缩和筛选,仅展现与特定内容相关的数据。目前一些企业已实施大数据策略,一些企业正在开发或者打算开发大数据。
2、捕捉和存储
这是第一步,大数据改变了业务模式,比如通过捕捉、存储和分析用户在社交媒体上发表的售后体验,可以提高质量,改进服务。企业不仅应捕捉和存储大数据,还应开发和利用大数据,因为只有开发和利用大数据,才能挖掘出大数据蕴藏的巨大价值,特别是应使用专门工具分析和开发杂乱的、非结构化的数据。
3、筛选
了解消费者情绪,优化供应链,去除虚假数据,为此,企业应对基础设施和软件进行投资,运用相应算法处理大数据,并聘请数据科学家完成相应工作。只有对数据进行压缩处理,智能地展现与特定内容相关的数据,才能更好地利用大数据。
4、分析
电子商务企业的规模在不断增大,企业需要对其核心业务数据进行分析,不能再凭感觉或直觉制定关键决策,最好对所有与客户相关的业务数据进行分析,以留住现有客户,吸引他们购买更多的商品,同时羸得更多新客户。
5、提供定制产品和个性化服务
分析和细分市场,根据个人或消费群体的喜好或者消费行为提供富有个性化的产品,比如,营销部门可以收集一些有价值的信息,找出购物者的兴趣所在,然后有针对性地组织一些营销活动,从而增加了企业在竞争中的优势,
电商应着眼情报数据挖掘
除了大数据工具的运用,情报数据也是电商公司真正应该关注的。
所谓的情报数据处理人员,从日常的工作场景来看,出去奔波收集情报的工作占了多数份额。他们会跟上下游供应链,以及进行跨部门沟通。例如,一个采购人员应该去生产线,去分析每家供应商的生产水平如何,优秀的工厂和二线工厂的生产周期区别,哪里的原材料采购价格最低。一般来讲,这样的一条情报能使用一到三年。
虽然数据性不强,但这些情报价值十分高。郝欣诚说得更为直截了当:“讲数据挖掘不如讲情报挖掘,情报挖掘才能够为电商企业提供真正生产力级的支持,如果情报挖掘都没做好,就想把它数字化和量化,有点操之过急。”
结语
现在的电子商务企业,日均能达到十万单的少之又少。在有海量数据积累的基础上,还要有一套优秀的BI系统,而且必须是按公司需求定制,才可能实现大数据。然而,在表面繁华的背后,又有谁知道在销售记录屡创新高的同时,电子商务的利润率是否也得到同步的增长呢?实际上,能够真正实现销量与利润率双增长的电商少之又少,而且在越来越少。因为,不少电商的销售业绩是通过价格战和付出大量促销成本来实现的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04