
大数据产业发展前景与投资
大数据是指需要通过快速获取、处理、分析以从中提取价值的海量、多样化的交易数据、交互数据与传感数据。其规模往往达到了PB(1024TB)级。通常来看,大数据具有体量浩大、类型复杂、生成迅速、精确性等四个特征。
而目前对大数据的看法仍停留在统计数据分析的层面上,因此和容易与BI分析联系在一起。而大数据分析有别于传统的BI分析,相对于传统的BI分析,大数据分析能力更强,数据规模更大,分析方式更为先进,具体如下图所示:
图表1:大数据与BI的区别
资料来源:前瞻产业研究院整理
从大数据的细分市场来看,大数据产业链参与者众多,覆盖面广。其应用于互联网、政府、电信、金融、制造业、医疗保健、零售、交通等多个行业。其中在互联网、政府、金融、电信等行业的大数据市场就已经形成了巨大的需求,份额超过50%。
根据中国IT发展报告,近年是大数据行业高速发展期,前瞻预测2015-2020年,中国大数据市场规模增速每年下降20%,到2020年,市场规模为454.33亿元,增长速度为20%。具体数值如下:
图表2:2015-2020年中国大数据产业市场规模及预测(单位:亿元,%)
资料来源:前瞻产业研究院整理
前瞻产业研究院发布的《中国大数据产业发展前景与投资战略规划分析报告》综合考虑硬件层、基础软件层、应用软件层和信息服务层市场投资机会的确定性和潜在的市场规模,下图描绘了中国大数据产业的投资象限。
总体来看,服务器、存储设备等硬件产品和以数据库为代表的基础软件市场,中国企业投资机会寥寥。受益于客户资源优势与本地化服务的优势,中国大数据投资机会将重点集中于应用软件层和信息服务层。
前瞻判断,大数据时代国内投资潜力最大的将是智能分析软件(BI)与信息安全领域。与各行业信息化建设程度差异相关,未来大数据智能分析软件产品的主要应用领域仍然会是政府、金融、通信、电力四大行业,与数据生命周期全程相关的信息安全领域则有望全面受益。而IT基础设施服务和咨询实施服务在大数据产业的潜在受益规模不一定很大,但受益于大数据产业的溢出效应,却很可能是大数据时代受益确定性较高的两个领域。
图表3:中国大数据产业投资象限
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29