
视频大数据技术在智慧城市中的应用
现代社会的信息量正以飞快的速度增长,这些信息里又积累着大量的数据。预计到2025年,每年产生的数据信息将会有超过1/3的内容驻留在云平台中或借助云平台处理。我们需要对这些数据进行分析和处理,以获取更多有价值的信息。在未来的“智慧城市”中,会有越来越大的结构化以及非结构化的数据。那么我们如何高效地存储和管理这些数据,如何分析这些数据呢?答案是,我们需要强有力的大数据处理系统进行支撑。
作为目前最火热的词汇之一,大数据在各个领域都已有了较为成熟的应用。在视频监控领域,大数据时代正悄悄来临。在城市安全、交通管理中将部署大量的视频监控设备,这些视频监控设备将产生大量的视频及其相关的数据,如交通卡口数据达到十亿条甚至更大级别,人脸库数据量达到千万条甚至更大级别。针对如此大级别的数据量,当前系统会逐渐暴露出数据检索速度越来越慢;数据统计、分析效率越来越低等问题,这些问题都需要一个成熟的技术来解决。
随着“智慧城市”中城市安全、智慧交通等的迅速发展,城市中非结构化的数据量越来越大。视频大数据技术侧重帮助各类客户从日趋海量的非结构化视频数据中快速发掘高价值的信息,协助客户提升其决策的效率和精准度。因此,视频大数据的处理好坏成了客户关注的焦点,视频大数据的处理技术也成了厂家能力的体现。针对“智慧城市”建设中大量视频数据的快速检索、统计分析的需求,海康威视等视频领域的领军企业已有了成熟的视频大数据的解决方案,目前已应用多个“智慧城市”的建设中。
一、视频大数据平台技术
针对结构化或半结构化数据的数据量特别大的场景,大数据平台作为应用平台的支撑平台,提供海量数据的高效处理能力。通过大数据平台,应用能够对这些数据进行高效地存储、检索(秒级)、分析和统计,切实地提高效率,提升用户体验度。
视频大数据平台一般以分布式集群的方式进行建设,集群能够对数据处理进行负载均衡,同时,集群能够方便地进行扩展,能够通过增加集群节点来提升平台整体性能。数据存储需要考虑以下几个方面:一、哪些数据需要保存到视频大数据平台;二、如果对原有系统进行改造,原有系统中已存在的那些数据该如何处理;三、如何保证数据的可靠性。视频大数据平台采用分布式计算,同时结合内存加速、负载均衡、本地处理,提供高效的数据计算能力。
视频大数据处理系统,在应对视频大数据处理中的存储问题,采用了分布式存储方式,提高了读写速度,并扩大了存储容量;在应对视频大数据处理中的计算问题,采用分布式计算系统,提高了数据分析和挖掘能力。视频大数据处理系统总体架构如下图所示,包括资源层、平台层、应用层三个层次。
视频大数据处理系统总体架构
资源层:包括IT基础资源、数据资源、视频资源等。能够产生、存储、处理海量数据的资源如过车数据、人脸数据、案事件数据等。
平台层:即视频大数据平台,包括数据存储、数据处理、数据迁移、集群管理等功能,同时为上层应用提供接口。视频大数据平台地位类似于数据库,但是它比数据库的处理能力要强大很多,可以对海量数据进行处理。
应用层:基于视频大数据平台提供的高效数据处理服务,行业应用平台(公安、交通、司法、能源、教育等)能够为用户提供海量数据的高效存储、检索、分析和统计等功能。
二、视频大数据技术在智慧交通中的应用
在智慧交通的道路交通应用中,卡口过车数据呈爆炸式增长。对于一个城市,每个卡口每天会经过成千上万辆车,假设一个城市有1000个卡口,每个卡口每天平均过车记录数为10000次,需要对一年内的数据进行处理,则过车记录总数为36.5亿。当卡口过车数据规模达到十亿级别甚至更大后,当前系统的运行速度越来越慢,过车信息检索、研判和分析的耗时越来越长,用户体验越来越差。使用传统的关系型数据库解决方案会使效率大大降低,或者在保证效率的情况下,会使软件、硬件投入成本大大增加,如采用小型机等。针对此类场景,可采用大数据技术,数据量特别大的过车数据由视频大数据平台来处理,视频大数据平台可提供足够大的内存和本地存储,同时,采用分布式计算,各节点并行进行计算,极大地提高数据处理的能力。视频大数据平台具有系统可靠、数据安全、数据处理能力高效、投入成本低、扩展能力强等特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08