
大数据如何助力ICU?
大数据(big data),是指无法在可承受的时间范围内,用常规软件工具进行捕捉、管理和处理的数据集合。它需要应用新的处理模式,才能成为具有更强的决策力、洞察发现力和流程优化能力的信息资产。目前,各行各业正全力提高对数据的加工能力,通过加工,实现数据的增值。医疗行业也不例外,研究者们亦正积极寻找如何从以前的丰富病例信息中挖掘出有用的线索。《华尔街日报》于今年6月深度报道了美国医疗机构在此方面的努力,它们都正致力于测量出重症监护病房在任何时间点的风险水平。
对于患者来说,重症加护病房(ICU)可能很快会成为一个不再那么可怕的地方。
医院的重症加护病房是为专门治疗重症患者而设,其治疗成功率高低不一。如今,研究人员正在从大量重症加护病房数据中寻求线索,以帮助患者取得更好的疗效。
研究表明,(美国)每年都有超过500万患者进入重症监护病房,其中死亡率为10%?29%。虽然有些患者的死亡不可避免,但有些患者是死于由设备和治疗感染引起的可避免的并发症。其他并发症包括血液凝块和过度镇静和长时间不动引起的精神错乱。
在过去,重症监护病房在核对清单等较为基础的技术方面曾成功减少了患者的风险。遵循患者护理步骤清单,能够防治因呼吸机留置过长引起的肺炎,或者导管和各种软管所造成的感染。
数据时代
现在,一些医院正在测试应用大数据的方法。通过对比,对多年来多个来源的医疗记录进行筛选,包括那些可能永远不会被纳入到单一分析法中的数据,以找到之前未知的相关性,从而发现更多的问题点,和更多可能的解决方案。
“清单核对工作可以作用于可预见的风险,但那些不太可预测的突发事件才是我们最关心的问题。”,哈佛医学院贝斯以色列女执事医疗中心(BIDMC)的首席质量官兼高级副总裁Kenneth Sands如是说。该医疗中心正在与来自麻省理工学院的集成系统科学家和APTIMA公司的人性因素专家通力合作,组建项目团队“危险状态”,致力于测量出特定重症监护病房在任何时间点的风险水平。
BIDMC拥有7间重症加护病房,其中包括外科手术和冠状动脉患者用病房。通过分析2012至2014年间所有重症加护病房中患者的数据,医院项目团队界定出了会增加风险的各种情况,如大量收治患者、重症患者的数量增多、重症加护病房中起用护理经验不足一年护士的比例增高、以及在重症监护病房中患者-护士比过高等等。
“我们正在使用大家此前想象不到的数据来预测重症监护病房中的危害。”BIDMC的麻醉、重症护理和疼痛医学临时主席Daniel Talmor说,“例如,人们一般不会把护士的经验水平计入风险”。
项目团队还在风险状态的过程中和之后的环节,发现了30项危害,如出血、用药错误、心跳骤停、出院后再次入住重症加护病房、跌倒和沟通中的错误等。
由该团队开发的应用程序能自动从电子病历类医学专用软件中抓取数据,并允许医生和护士输入有关特定患者与病房相关的额外问题。然后利用一种可视“仪表盘”计算风险评分,并将其实时显示到重症加护病房工作人员的显示器和手持设备上。
Sands博士说,“目前,我们已经可以对即将进入危险状态的患者进行提前预警。”
Patricia Folcarelli是该院的护士兼患者安全高级主管。她讲到,重症加护病房可以通过改变人员编制、推迟选择性程序、或将患者从负荷过大的重症加护病房中转移到负担较小的,而不是仅仅靠着一张可能并不适用于每一个患者的一般清单。因此,该团队还正在开发“能针对具体情况”的个性化清单,侧重于单个患者的需求。
BIDMC的“危险状态”团队是一个由戈登和贝蒂?摩尔基金会资助的项目。该基金会还为其他数个类似领域的团队提供了研发资金,旨在帮助医院改善重症护理的效果。受资助的其他团队包括位于巴尔的摩的约翰·霍普金斯大学医学院,他们正在通过对当前的患者数据与历史数据相对比,进行快速分析和诊断,从而提高重症加护病房的效能。约翰·霍普金斯大学医学院患者安全和质量部的高级副总裁Peter Pronovost表示,重症加护病房中的医疗设备不能互联,使得医生和护士不得不从各个医疗设备中拼凑出患者数据,这不仅浪费人力物力,还有可能会将患者置于危险境地。
“我们需要一种能将病历数据与设备相连的软件,以预测可能危害到患者的风险,并根据风险推荐相应的治疗方法,显示出治疗方法是否已经实施,然后监控患者的情况,”Pronovost博士如是说。
建立连接
约翰·霍普金斯大学指派了一位应用物理实验室专家来帮助它设计一个名叫“浮现项目”的系统,以此获取来自电子记录和床头传感器的数据,并显示个别患者是否应该接受治疗,以及防治相关并发症的治疗方法。
Alan Ravitz是该项目的工程师主管。他介绍到,项目团队先向重症加护病房的工作人员仔细询问了其最需要的信息,以及信息应当如何显示。护士Rhonda Wyskiel建议显示界面设计成表盘状,这也成为了病房中“危害显示器”和护理人员平板电脑设备的基础设计。显示器能提醒工作人员何时应给予患者一定的护理,在工作人员没有按时提供护理时用处尤为巨大。其界面为七色表盘,红色表示迫在眉睫的危险,黄色为发展中的问题,绿色则为已经完成的任务。
显示器中安装的其中一个传感器能持续标记患者的病床角度。研究表明,当重症加护病房的病床保持在30度角时,可以预防患者因呼吸机罹患肺炎。因此,如果护士在改变了病床角度后忘记将其重新调回到30度,显示器的该部分则会变为红色。此外,显示器中的其他传感器还包括一个可以挂接到静脉注射杆的装置,可以测量出患者行走的距离。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29