
用大数据思维 更好服务民生
在互联网、云计算等信息技术结合而成的“大数据时代”,我国经济进入创新驱动发展的新常态。采集、整理和开发数据的创新能力,成为信息时代重要的生产要素。信息技术在推动经济社会发展的同时,也正深刻改变着人们的生产生活,影响着人们的思维行为习惯以及社会公共服务管理领域的各个方面。今年,国务院办公厅印发《2015年政府信息公开工作要点》,涉及高速收费,“上网慢、上网贵”,看病难、看病贵等诸多民生领域,既表明了政府对大数据应用的重视,又突出政府的民生服务理念。从全局和战略的高度加快大数据建设,运用大数据手段改革公共服务管理模式,打破部门数据的条块分割,促进数据信息平台的大融合,既是经济转型升级的迫切需要,也是优化公共服务、提高政府行政效能,进一步提升公共服务管理水平,创新社会治理体制、建设服务型政府的难得历史机遇。
第一,树立“大数据”意识,更新公共服务管理理念。当前,数据日益成为帮助人们认识世界、找出问题、想出办法的基本来源,不断积累的大数据包含着深度知识和价值。“大数据”所展现出的精确分析、相关作用、统合集成等鲜明特点,也给社会公共服务管理带来了一场新的革命。一方面,政府应积极适应大数据时代的发展要求,运用大数据集成思维,积极更新公共服务管理理念,推行信息化服务,不断提高公共服务管理水平。另一方面,各级民政部门要实现保障基本民生、提供社会服务、加强基层治理等具体职能,就应适应国内外信息化发展大趋势,积极探索信息化条件下服务群众的新方法、新途径,更新信息化发展理念,充分借鉴、运用“大数据”的新理念、新技术,采集、分析、运用各类社会数据信息,全面推进管理服务人性化。
第二,提高服务工作效能,推进民政专业化建设。民政工作直接关系着人民群众的切身利益和社会大局的稳定,当前,相当一部分基层政府的数据采集、计算、存储和查询调用,仍用传统、落后的方式进行,难以适应大数据的发展需求,亟待改进和加强。首先,要明确服务方向,强化服务措施。政府要从大数据的角度,深入开展综合化、信息化服务管理改革,将居民家庭经济状况、健康指数、养老服务需求等一系列民生社会问题,梳理成一项项综合数据,形成大综合、大服务、大管理格局,通过建立城乡社会公共服务信息平台,综合提升社会管理服务能力。其次,要逐步建设好信息化基础设施。各级政府应抓紧完善大数据急需的基础建设,比如计算机的更替、技术人员提升及大数据运行规则制定等方面的建设,实现政府服务信息化基础建设的一个大飞跃。此外,还要推进管理服务机制的制度化建设,大力推进民政工作专业化建设,提升社会服务的专业化水准。
第三,推行大数据信息公开,引导社会参与共建共享。《2015年政府信息公开工作要点》紧紧围绕党和政府中心工作以及公众关切,已对今年政府信息公开工作细致地作出部署。需要我们从国家层面统筹规划,尽快着手制定全国统一的政府开放数据标准,加大信息公开惠民政策的落实力度,注重多方参与合作,提升综合服务能力水平,充分发挥政府数据信息对人民群众生产、生活和经济社会活动的服务作用。
第四,促进大数据技术创新,积极发掘民生价值。大数据在带来巨大技术挑战的同时,也带来巨大的技术创新与商业机遇。一方面,要加大大数据产业的政策资金扶持力度。要增加政策信息透明度,促进大数据工程和学术紧密结合,加大技术资金扶持力度,建设公共服务平台,鼓励发展云计算与大数据通用基础软件、移动互联网应用软件等产品的企业,大力发展面向信息技术产业的公共服务。另一方面,要加快培养大数据技术人才,鼓励大数据产业人才创业。以大数据领域研发和产业化项目为载体,不断深化行政服务管理创新,加快培训创新型技术人才和应用型大数据技术人才,加快大数据分析能力和利用能力平台建设。
第五,加强监管与法治,保障大数据合理应用。大数据属于网络和信息范畴,在给互联网行业乃至国家甚至全世界带来变革性影响的同时,诸多社会问题也随之而来。在这一过程中,既要强化合理监管,还要循序渐进地加强大数据领域法制建设。只有加强监管与渐进式的大数据领域法制建设,才能保障大数据合理应用于改革公共服务管理,推进大数据服务民生的战略才有可能得以顺利实施。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16