
用大数据思维 更好服务民生
在互联网、云计算等信息技术结合而成的“大数据时代”,我国经济进入创新驱动发展的新常态。采集、整理和开发数据的创新能力,成为信息时代重要的生产要素。信息技术在推动经济社会发展的同时,也正深刻改变着人们的生产生活,影响着人们的思维行为习惯以及社会公共服务管理领域的各个方面。今年,国务院办公厅印发《2015年政府信息公开工作要点》,涉及高速收费,“上网慢、上网贵”,看病难、看病贵等诸多民生领域,既表明了政府对大数据应用的重视,又突出政府的民生服务理念。从全局和战略的高度加快大数据建设,运用大数据手段改革公共服务管理模式,打破部门数据的条块分割,促进数据信息平台的大融合,既是经济转型升级的迫切需要,也是优化公共服务、提高政府行政效能,进一步提升公共服务管理水平,创新社会治理体制、建设服务型政府的难得历史机遇。
第一,树立“大数据”意识,更新公共服务管理理念。当前,数据日益成为帮助人们认识世界、找出问题、想出办法的基本来源,不断积累的大数据包含着深度知识和价值。“大数据”所展现出的精确分析、相关作用、统合集成等鲜明特点,也给社会公共服务管理带来了一场新的革命。一方面,政府应积极适应大数据时代的发展要求,运用大数据集成思维,积极更新公共服务管理理念,推行信息化服务,不断提高公共服务管理水平。另一方面,各级民政部门要实现保障基本民生、提供社会服务、加强基层治理等具体职能,就应适应国内外信息化发展大趋势,积极探索信息化条件下服务群众的新方法、新途径,更新信息化发展理念,充分借鉴、运用“大数据”的新理念、新技术,采集、分析、运用各类社会数据信息,全面推进管理服务人性化。
第二,提高服务工作效能,推进民政专业化建设。民政工作直接关系着人民群众的切身利益和社会大局的稳定,当前,相当一部分基层政府的数据采集、计算、存储和查询调用,仍用传统、落后的方式进行,难以适应大数据的发展需求,亟待改进和加强。首先,要明确服务方向,强化服务措施。政府要从大数据的角度,深入开展综合化、信息化服务管理改革,将居民家庭经济状况、健康指数、养老服务需求等一系列民生社会问题,梳理成一项项综合数据,形成大综合、大服务、大管理格局,通过建立城乡社会公共服务信息平台,综合提升社会管理服务能力。其次,要逐步建设好信息化基础设施。各级政府应抓紧完善大数据急需的基础建设,比如计算机的更替、技术人员提升及大数据运行规则制定等方面的建设,实现政府服务信息化基础建设的一个大飞跃。此外,还要推进管理服务机制的制度化建设,大力推进民政工作专业化建设,提升社会服务的专业化水准。
第三,推行大数据信息公开,引导社会参与共建共享。《2015年政府信息公开工作要点》紧紧围绕党和政府中心工作以及公众关切,已对今年政府信息公开工作细致地作出部署。需要我们从国家层面统筹规划,尽快着手制定全国统一的政府开放数据标准,加大信息公开惠民政策的落实力度,注重多方参与合作,提升综合服务能力水平,充分发挥政府数据信息对人民群众生产、生活和经济社会活动的服务作用。
第四,促进大数据技术创新,积极发掘民生价值。大数据在带来巨大技术挑战的同时,也带来巨大的技术创新与商业机遇。一方面,要加大大数据产业的政策资金扶持力度。要增加政策信息透明度,促进大数据工程和学术紧密结合,加大技术资金扶持力度,建设公共服务平台,鼓励发展云计算与大数据通用基础软件、移动互联网应用软件等产品的企业,大力发展面向信息技术产业的公共服务。另一方面,要加快培养大数据技术人才,鼓励大数据产业人才创业。以大数据领域研发和产业化项目为载体,不断深化行政服务管理创新,加快培训创新型技术人才和应用型大数据技术人才,加快大数据分析能力和利用能力平台建设。
第五,加强监管与法治,保障大数据合理应用。大数据属于网络和信息范畴,在给互联网行业乃至国家甚至全世界带来变革性影响的同时,诸多社会问题也随之而来。在这一过程中,既要强化合理监管,还要循序渐进地加强大数据领域法制建设。只有加强监管与渐进式的大数据领域法制建设,才能保障大数据合理应用于改革公共服务管理,推进大数据服务民生的战略才有可能得以顺利实施。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07