京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来自挖掘机企业的大数据分析处理
席卷全球的智能制造浪潮势头越来越猛。传统工业正面临前所未有的冲击,而这一日益剧烈的冲击力来自当下最热门的话题——物联网和大数据。
作为中国工程机械龙头企业,三一重工在20万余台工程机械上加装传感器,历经多年产生了大量数据,并在此基础上推出了“挖掘机指数”。通过这些数据,三一重工可以实时监测设备的作业情况、关键零件磨损、油耗和承压情况等,从而在问题出现之前提出预警,做到主动维修,实现对成本的精准控制并大幅提高用户服务质量。

来自挖掘机企业的大数据分析处理
有报道称,通过七年多的积累,三一重工已形成5000多个维度、每天2亿条、超过40TB的大数据资源。该“挖掘机指数”还能显示设备的施工时长和开工率等数据,在一定程度上反映出经济走势。
“‘挖掘机指数’主要起监测作用,还只是一个相对初步的应用,”美国参数技术公司(Nasdaq:PTC)全球副总裁兼中国区总裁寿宇澄告诉界面新闻记者,随着运营的逐步深入,企业可以进行更多的数据分析,具有很大的发展空间。
除对产品状态、运行和外部环境进行全面监测外,大数据的应用还可以实现控制、优化、自动等多种功能。通过产品内置或产品云中的命令和算法进行远程控制,对实时数据或历史记录进行分析,植入算法,大幅提高产品的产出比、利用率和生产效率,将监测、控制和优化功能融而为一,提高产品的自动化程度。
最简单的产品案例是美国iRobot公司的真空扫地机器人Roomba,它内置软件和传感器,能对不同结构的地面进行扫描和清扫。更先进的产品则具备学习能力,能根据周边环境分析产品的服务需求,并根据用户的偏好调整。自动功能不仅能减少产品对人工操作的依赖,亦能实现偏远地区的远程作业,提升危险环境下的工作安全性。
正是瞄准了大数据的广阔前景,全球范围内不少工业企业正在纷纷转型大数据公司。美国工业巨头通用电气公司(下称GE)宣称,依靠机器以及设备间的互联互通和分析软件,打造智能机器,实现人、机器和数据的无缝协作,到2030年,要为全球GDP贡献15万亿美元。
GE与英特尔、思科、华为等多家企业携手,耗资十多亿美元开发了Predix软件操作平台,负责将各种工业资产设备和供应商相互连接、接入云端,并提供资产性能管理和运营优化服务。自今年起,面向所有企业开放。
所有的智能互联产品,从家用电器到工业设备,都包括三个部分:物理部件(例如机械和电子零件)、智能部件(传感器、微处理器、数据储存装置、控制器、软件、内置操作系统和数字用户界面),以及互联部件(互联网接口、天线、连接协议、联通产品的网络以及在远程服务器运行并包含外部操作系统的产品云)。
大数据和智能制造浪潮虽给传统工业带来了巨大冲击,一些在物理部件领域具有极强口碑和产品质量保障的企业,却依然可能“活”得很好。“我们现在总是强调智能部件,并不意味着物理部件不重要,例如日本、德国等一些企业在产品细节上精益求精,没有智能也未见得就会消亡。”寿宇澄说。
但他亦认为,国内企业的制造能力、创新能力和服务能力是否能够抵御大数据和智能制造浪潮,“还得打一个问号”。在他看来,国内传统工业企业向智能化转型,不失为一个好的出路。“长期来看,物理部件的重要性在不断降低,智能化产品带来的用户体验是不可比拟的。”寿宇澄说。
寿宇澄认为,物联网大数据平台的开发非常复杂,每个企业都去自主开发“不现实”,“比如三一重工开发了一套平台,它的竞争对手也去开发,这种相互独立的做法无法做到‘互联’,”寿宇澄说,工业企业应更多地考虑跟第三方软件公司合作,通过分期订购(subscribe)模式,根据市场情况调节订单,还可以极大缓解资金压力。
中国尚未有具有市场影响力的物联网大数据平台企业出现。寿宇澄告诉界面新闻记者,目前国内的物联网企业推出的应用型产品层出不穷,主要以App为主,没有大平台。“这个需要一定的经验积累,需要客户基础和市场号召力。”他说。
美国参数技术公司通过大举收购,拥有了ThingWorx和Axeda等多个物联网应用程序平台,占据了全球七成以上的市场份额。其中,ThingWorx已在GE旗下的智慧工厂中使用。
寿宇澄认为,中国政府首先要做的是鼓励具备条件的企业优先进入行业,以资金资助的方式推动一批企业进行试点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27