
“大数据”可别变成“大忽悠”
“不少人以为,大数据技术很成熟了,甚至说大数据是万能的。”近日,在“中关村大数据日”上,西安交通大学数学与统计学教授徐宗本院士说,“大数据具有大价值,但也有大忽悠的一面。”在接受科技日报记者专访时,数据堂合伙人柴银辉认为,“大数据就像5年前的云,还处于初级阶段,还需要跨过几道坎。在这个过程中,要谨防泡沫出现”。
数据无差别存储:想要应用成本要降万倍左右
“数据无差别存储,使用起来成本太高。”柴银辉估计,“这些数据想要应用,成本要降到万倍左右。”
目前,很多人把“大数据”等同于“数据大”。在柴银辉看来,“分类存储的数据才能产生价值”。
对大数据拥有者进行分析,柴银辉认为,前景并不乐观。“大家说政府掌握数据,但很多部门只是把文件堆在那里,甚至没有数据库。国企有数据,却不知该怎么存放。无差别存储的数据,很难产生价值。”
柴银辉认为,大数据想要应用,就要经历全、新、细、准四个阶段,但目前很多数据还没完成第一个阶段。
“我国意识到大数据的价值,并不比欧美晚,但并没有很好的大数据应用。”电子科技大学教授周涛曾经分析,其中一个重要原因,是拥有大数据的人、拥有大数据分析技术的人、拥有数据分析需求的人是分离的。
他举例说明,比如遥感、水利、水文数据,如果国家不能有效管理起来,就没法产生价值,反而是一个巨大的负担。
技术上并不成熟:新分析方法还没出现
“不少人觉得,大数据技术很成熟了。”徐宗本说,这其实是一个误区。
徐宗本从处理和分析的区别入手加以说明:“我们想做一个简单统计,做一个查询,做一个排序,做一个比对,等等,这叫数据处理。它是用计算机的标准逻辑一步过的处理方式。而数据中有没有趋势、有没有共性结构、有没有关联数据,这些叫数据分析。”
为了更便于理解,徐宗本举了一个例子:“在这间屋子里,找出谁个子最高,这是处理,但找谁和谁关系最好,这叫分析。”
但在现实社会里,很多人把两者混为一谈。这也造成了他们对大数据技术的误读。徐宗本认为,大数据的成功是部分处理技术的成功。现有例子对于分析而言,基本还是传统方法,新方法并没有出现。
硬蛋首席技术官李世鹏告诉科技日报记者:“我们在做智能硬件孵化时发现,对于供应商和创业者需求的精准分析,大数据还需要进一步成熟。”
“大数据不是低端业务的简单整合。”数据堂CEO齐红威说,“现在的大数据应用还非常浅,远没到分析阶段。”
人才瓶颈制约发展:基础性数据分析人才缺口达1400万
“全球竞争对手,几乎早于我们半年,把顶尖大学大数据研究室里的优秀专家挖光了。”滴滴出行CEO程维说,“目前,我国每年培养的大数据深度学习方面的博士生大概只有50个人。”
“大数据发展的瓶颈是人才。”程维说,大数据健康发展,必须培养出世界领先的团队。
据中国商业联合会数据分析专业委员会统计,我国未来基础性数据分析人才缺口将达1400万;而在BAT企业招聘职位里,60%以上都在找大数据人才。
“一个大数据方面的普通大学生,年薪起码也有五六万美金,吸引力不能说不强,但现在还是缺人。”数联铭品CEO曾途告诉科技日报记者,“大数据是一个新兴事物,高校、院所里培养的人才还不多。这种现象短时间内很难改变。”
“现在大数据有很多问题,首先就是人才缺乏。”北京大数据研究院学术委员会主任张平文提到了一个担忧,“高端人才都在公司里,年薪上千万,学校雇不起。这可能会对基础研究产生影响。”在他看来,解决这个问题,需要高校、院所机制体制的突破。
个人隐私亟待保护:大数据运用还在法外“裸奔”
“前两天,家人甲状腺不舒服,我在网上查了相关知识。过了一天,就有人说是甲状腺医生,想加我为微信好友。”张平文所说的,正是人们对于数据安全的担忧。
“数据具有特殊性。如果反映的是群体趋势,这对生活是有益的;如果触及个人隐私,就可能造成伤害。”柴银辉说。
“在美国,你去贷款,但哪一年在图书馆借书忘了还或推迟还,就可能受影响。美国诚信体系建设比较完善。同时,几十年来,相关立法可以让个人隐私得到很好的保护。”曾途说,“目前,我国大数据还处在起步阶段,尚未进行立法监管。”
“存在可观的利润空间,就可能出现泄密、买卖信息。”曾途认为,不让大数据运用在法外“裸奔”,“立法应当提上议程”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04