大数据有多大?关于大数据的三大误区
关于大数据的三大误区 随着整个行业对大数据的兴趣越来越大,我最爱的话题之一,我在2013年做过的大数据的公众演讲超过我职业生涯中的任何往年。我在行业大会、活动,大学以及EMC内部共做过许多次演讲。在这些演讲中一次又一次地接触到了一大堆关于大数据的评论,提问以及错误的理解。我相信将我听到的分享给大家会很有用。 以下是对于大数据的三大误区:
1. 最重要的,是关于大数据本身的大小
大数据主要是数据的大小,因为大数据就是大的,对吗?其实,并不完全是。哈佛的定量社科学院的Gary King说。当然,如今的数据处理量要远超过去(这里是指”3Vs”的量-量,多变性及速度),但如果人们只关注于GB、TB或PB,他们将仅仅视大数据为关于存储和科技的问题。尽管这也是绝对重要的,但大数据的更突出的几个方面通常是另外两个V:多变性(Variety)和速度(Velocity)。速度指的是数据流及非常快的数据,数据积累或进入数据仓库时的低延迟,以使人们可以更加快速地(或者甚至自动地)做出决定。数据流的确是个大问题,但是对我来说,其多变性是3V当中最有趣的。
上面显示的这些图标正是大数据产生的来源。实际上,这正说明了一个哲学问题—不仅仅是大数据改变了,更多的是,数据的定义本身已经发生了变化。也就是说,大多数的人认为数据就是成行成列的数据,如Excel表格,RDBMS数据库,或存储着TB级结构化数据的数据仓库。这些的确没有错,大数据主要是有关半结构化数据和非结构化数据。 大数据包含了所有人们并不认为是数据的所有其他的事物,如RFID芯片,智能手机的地理空间传感器,图像,视频文件,点击流,语音识别数据以及这些数据的元数据。 当然,我们需要找到有效的方法来
存储大量的数据,然而我发现,当人们开始抓取数据的多变性及其速度,他们也开始寻找更加创新的方式来使用这些数据。
2. 你确定要鸡蛋碰石头吗?
“好吧,但是为什么我一定需要新的工具?我不能用原来的软件工具来分析大数据吗?”我们在讨论使用Hadoop去排列成百上千的非结构数据输入。讨论中有位听众提问,为什么他不能简单地使用SPSS来分析大量的文本语料库。事实上,一旦你领会了#1中的内容,那么你将意识到你需要一个可以理解、存储和分析不同数据输入(图像,点击流,视频,声纹,元数据,XML,等),并且可以并行处理他们的新的工具。这就是为什么内存中的桌面工具足以处理本地内存中的分析(SPSS,R,WEKA,等)却无法处理大量的大数据源。所以我们需要新的技术来管理这些各不相干的数据源,并以并行的原则管理他们。
3. 不完整的数据质量代表大数据毫无意义
“是的,那么大数据,数据的质量会怎么样呢?是不是意味着更大规模的“无用出入(GIGO)”? 大数据也一定可能会乱,而数据质量对任何分析都非常重要。然而,关键是要记住数据将不可避免地混乱。即,会有很多杂乱,各种异常情况,以及不一致性。而重要的是要把重点放在数据的数量和种类,以及它们可否可修剪并用以做有价值的分析。换句话说,在这些混乱之中要寻找某种信号。在某些情况下,组织可能要解析和清理大量的数据源,而在其他情况下,这些也可能不太重要。可以考虑谷歌趋势分析。
谷歌趋势分析显示人们搜索的最热门事情,如整个2013年在谷歌搜索的最多的事情,如上图所示照片。这需要大量的存储空间,处理能力以及强大的分析技术以从搜索中筛选并排名。这是使用大数据而忽略GIGO的一个好例子。 从这个观点来看,许多人们会说“哦!这听起来的确是大的改变”是的!正如我的一个同事所说,可以用大数据的名字或动词意义做一个区分。也就是说,作为名词,把大数据仅仅当作需要被存储和安置的“非常多的东西”。作为动词,大数据就意味着动作。这个阵营的人们视大数据为破坏性的力量,是改变他们的操作方式的动力。利用大数据以创造性的方式测试好点子,从而以分析的方式解决业务问题,如进行A/B测试—请参考谷歌测试50色调的蓝色,去寻找人们最愿意点击的Gmail用户,而不是仅凭营销经理的猜测。或者想办法衡量没法衡量的事情,比如公司和大学找更好的方式来实现图像归类的自动化。以新的方式探索新点子—以数据来回答“假如„„”的问题。 在这个竞赛中,那些把大数据视作动词的组织将是最大赢家!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17