京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习和大数据:是先有鸡还是先有蛋?
“对于机器学习,需要大量容易获得的历史数据。但是,如果你没有这个数据会怎样?”
现在,机器学习几乎无处不在,它经常出现在大数据应用之中。机器学习已经被赞誉为大数据分析和商务智能发展的未来。但是从机器学习中提取价值并不仅仅是在一个新的工具中添加一个插件,或查看一下工作效率和销量的提高。
成功的机器学习项目依赖于很多因素,包括选择正确的主题,对于运行的环境,合理的机器学习模型,当然最重要的是现有的数据。
大数据时代,数据就是财富。我们不得不承认,关于客户交易、销售或设备运行日志的数据是企业所拥有的最宝贵的资产之一。特别是机器学习现在为企业提供的机会远远超越传统的商业智能,比如可以帮助预测未来的销售或潜在的设备故障,从而提高利润和减少临时的维修。
数据,大还是小
在谈论“大数据”时,我们习惯于假设越多越好。虽然现实中常常的确也是这样,数据对于实时在线个性化应用是很关键的,但不同的任务对于数据大小的需求却不尽相同。
对于机器学习任务来说,为了带来价值,虽然10Gb的日志似乎有些少,但有时其实也可以刚好够用,具体要看面对什么样的任务。10Gb的数据对于Google来说也许微不足道,但实际上足以给一个传统的线下企业带来一个巨大的变化。
一个拥有75000人的大公司的人力资源管理部门。如果公司试图预测流动风险,以便更好地规划未来的人力资源战略,并及时采取预防措施,那么他们就可以使用机器学习,而机器学习就可以从分析员工记录开始。这些记录每天都有巨大的不同,反映在工作的时间,角色的转变,通过的培训课程,休病假的天数,等等。虽然这种数据量可能被认为是过少,则深度地挖掘各种要素需要它超越简单的统计,走向机器学习。
在另一个极端,有些公司可能认为他们拥大量的珍贵数据,如很多年的销售报告,可以后来才发现,它们只可作为集成数据,而没有存储原始输入。机器学习需要从细节中学习,仅仅拥有每季度或每年的集成数据对任务来说根本不够。
因此需要数据的多少关键在于用户所面对的具体任务。
历史的经验教训
通常数据集拥有一个时间跨度,而这个时间跨度是非常重要的,它应该足够的长,以反映所有相关的事件以及周期性的变化。例如,如果一个组织要建立一个工作模型来预测一个零售公司的产品需求,这将至少需要两到三年的历史数据,这样才能容纳季节性的趋势。但是,如果要预测昂贵的制造设备几年才可能出现一次的故障,就需要有一个远远长的多的历史数据,以便在故障出现之前检测异常情况并预测故障的发生。
同时,如果你带着巨大的客户基础和认购商业模型进入一个领域,例如移动电话网络、流媒体业务或在线游戏,利用短短六个月的数据开始一个有意义的机器学习项目(例如,预测客户的流失)是完全可行的。
通常情况下,数据的组织和存储是一个公司基础架构部门的关键任务,关系到公司的核心利益,如何选择合适的存储方案呢?是充斥着差异和错误的非结构化存储,还是未集成的十几个独立系统。虽然引进数个单独的存储库是摆脱数据孤岛、提高数据质量的一种有效方式,但这个过程是漫长的,非常昂贵,而且不会带来直接的价值。但是,如果引入机器学习,利用非结构化存储依然可以帮助调整进一步的基础设施投资以及引导数据收集策略,非结构化存储目前是一种非常有效的数据组织和存储方式。
数据还可以来自于其他什么地方?
很多企业忽略了一件很重要的事情,就是企业可以从外部环境中购买数据。
一方面,最强大和最重要的信号通常隐藏在该公司所拥有的数据中。因此,相比于银行客户的社交媒体行为,他们的交易中所蕴含的知识可以更好地预测客户是否将偿还贷款。
另一方面,许多公司低估了外部因素的价值,如气候数据。它会对很多情况产生影响,如冰淇淋的需求,在需求不太明确的情况下,可以通过个性化推荐,将冰淇淋推荐给那些在天气差时更可能留在家里玩游戏的网络游戏玩家。
因此企业除了利用自己的数据之外,还可以有很多的选择,例如社交网络平台,可以利用用户的在社交网络的足迹预测用户的偏好,又或者季节性数据,利用季节性变化预测用户的未来行为,等等。
机器学习正在很快地从一个很少人关注的技术主题转变为被很多人使用的管理工具。为了避免错失良机,企业现在需要开始设计自己的机器学习项目,以帮助他们为未来的机器学习做好准备。同时,企业需要理解哪些数据是可获得的,缺少的和需要的,现在就可以开始收集它们,以帮助他们更快地获得投资回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20