
近年来,“大数据”似乎成为了一个越来越时髦的词,它已经不是只有互联网行业谈论的话题了,“大数据”已经开始被越来越多的普通百姓所熟知,大数据也已经渗透到了我们的生活中的。
数据分析这个职业也是目前很有前景的领域之一,越来越多人想投入其中,而在数据呈爆炸式增长的大数据时代,数据过剩,人才短缺。数据海洋 同学凭借多年的从业经验,总结了作为一名数据分析师应该知道的9个问题:
1、如何做好数据分析?
分析师成长是通过“干”、”思”、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你的商业意识、数据分析思维、技能得到提升,广积粮,缓称王,实现厚积而薄发。
2、如何做好数据挖掘?
数据挖掘和数据分析在我认为,都是实现数据价值的“工具”、“方式”。数据挖掘相对于数据分析来说,入门门槛会更高一些,对于数据挖掘方法,挖掘工具要求更高。但做好数据挖掘,参考数据分析。
3、需要看什么类型的书?
很从刚做分析师的朋友,但喜欢问:我想做好分析师要看什么样的书?这个背后的逻辑是不是说你看了别人推荐给你的书,你就可以成为很厉害的分析师。
我的观点是:书是一定要看,而且有机会的时候多看看书。但一定要明白看书你对的价值体现在哪?
但数据分析更多是干,实践中成长的。
4、做好数据分析需求什么样的技能?
我想做数据分析,一定要会SAS、SPSS、R吗?如果你不去做模型。
基本的统计知识肯定要掌握的,但分析师目前主要还是以SQL+EXCEL+PPT来完成一份分析报告。
5、什么专业才能做数据分析?
现在招聘数据分析大多数都是要求:计算机、统计学相关专业。但是我相信未来数据分析招聘的专业会越来越宽,而且很多管理类(营销、管理学、情报学等)专业毕业的人会是比较受欢迎的。因为当大家对数据分析理解越来越深的时候,会发现数据分析核心的能力还是在:分析数据,然后与商业结合。
6、数据分析的价值?
基于历史数据,来告诉相关人的业务情况是怎么样的,结合对于公司业务模式的理解,一起制定相关策略,帮忙公司实现业务目标。
基于公司内、外部的数据,结合分析师对于公司业务的理解、行业发展趋势的理解,提出公司及行业发展趋势,为公司制定相应的战略提供参考。
7、数据分析,到底是分析什么数据?
分析公司内、外部的数据,内部的数据有以下几类(以电子商务为例):
1、流量数据或者说网站的点击流(日志)数据。
2、订单数据。
3、商品数据。
4、会员数据。
5、供应链相关数据。
6、客服数据。
不同公司对于数据收集的粒度、完整性不一样。是否所有公司都要把所有的数据都收集下来,我的观点是:如果允许,当然越多越好。但是很多是时候是要分析师对评估哪些数据需求收集,保存多久的数据。分析师一定要用一定ROI的意识。
那种数据都没有积累多少,就号称自己是大数据公司,号称通过大数据建议竞争优势,你觉得可能吗?
8、数据分析有几种角色?
数据分析:助理分析师、分析师、资深数据分析/数据分析专家、商业分析师;
数据产品经理:我特别喜欢这种角度,我觉得的真正的数据分析师,应该有产品的思维逻辑。因为不管你在做报表,报告,系统,那怕是一个简单的数据需求,你都可以理解为一种数据产品。(什么是产品,产品是解决目标用户的问题。请分析师都牢记这一点。)
9、什么样的人适合做数据分析?
除了之前我的一些文章讨论到的需要相关的基本的技能外,也许下面的内容对一个数据分析师成长更为重要:
1、看到数据有兴奋感的人。有兴奋感说明你有兴趣,那说明很会有意愿把数据分析好。
2、愿意学习的人。你分析的内容永远不会一尘不变,即使你分析的主题是相对固定,但业务是变化的,你需要不断的学习业务,同不同人沟通,吸收别人的观点。所以分析师一定要报着学习的态度。
3、逻辑思维较强的人。数据分析师想要把你的分析好,一定要有结论思维。
4、表达与沟通。因为数据分析最终价值的实现,一般来说不会是分析师亲自去制定或者实施。所以你一定很有条理、逻辑清晰向别人表达,让业务方认识到你分析结果的价值,从而影响业务方去愿意使用你从数据中得到的观点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07