
大数据为管理工作提供支持
我国教育改革和发展正面临着前所未有的机遇和挑战。以教育信息化带动教育现代化,破解制约我国教育发展的难题,促进教育的创新与变革,是加快从教育大国向教育强国迈进的重大战略。大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。也就是说大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。大数据作为重要的参照物正在改变政府、企业的决策和营销模式,高校的学生管理工作必须面对这一变化的挑战,前瞻性的转变工作思路,运用一切技术手段和工作方法,充分挖掘大数据的价值,为学生管理提供各种支持。
大数据能使学校管理决策更理性,能更准确地掌握学生学习、生活动态,制定和实施的政策更加科学;大数据也可以提高各学生管理部门的工作质量和效率,推动工作创新,给整个学生工作管理体系以强有力的支撑。大数据时代的到来必将推动现有高校的学生管理工作重构,有利于加强学生管理工作的针对性、动态性、创新性和前瞻性。
学生管理的针对性变革体现在高校的学生管理工作要贴近学生生活、与时俱进。科学发展观的核心是“以人为本”,以人为本体现在学生管理中意味着要始终把学生放在核心的位置,以学生为本,一切管理行为围绕着学生展开,理解学生,关心学生。高校的管理要进一步贴进学生的生活,具备更强的服务意识就要挖掘大数据表达给高校管理层的信息。每天每个学生在使用互联网的过程中产生着各种各样的数据,当数据量达到一定级别后,就可以进行汇总分析、挖掘探索。例如:通过食堂窗口饭卡使用频次,使用金额的数据分析,我们可以了解学校贫困学生的分布情况而调整各类助学金的评选和分配。这种具有针对性的数据分析必将对高校的学生管理产生深刻的影响,带来强有力的冲击。
学生管理的动态性变革体现在高校的学生管理工作要跟上学生的动态,先行一步。大学生富有活力,世界观、人生观、价值观都处于形成期,思想和行为呈现出变化比较快的特点。那么高校的学生管理模式如果还遵循教条式、封闭式、单向强制的模式,必将走向瓶颈;现在的学生管理要关注大学生的生活变化,主动发挥大数据的舆情作用,分析大数据所反映出的真正诉求,以实现学生管理的动态化。例如:通过对学生微信朋友圈的分析、学校bbs和贴吧在选课这一时间段数据分析,学生主要的提问是围绕公共选修课的教师、课程等,那么学生教务管理系统可以将公选课的教师介绍、课程介绍整理汇编,为学生选课提供佐证。通过对大数据的分析,可以实现先行一步的动态管理。
学生管理的创新性变革体现在高校的学生管理工作要满足学生的需求,推陈出新。高校学生管理创新的重点是根据时代的要求对管理内容、管理方法等进行分析和研究,并在此基础上进行必要的调整与改进。那么调整和改进的依据是什么,这就是大数据的分析。大数据其实离我们并不遥远,除了上网搜索的数据,随处可见的摄像头、日渐流行手机上网都在产生着海量的数据。如果能够利用好这些数据,在调整、制定学生管理规定时,参考大数据带给我们的信息,以学生的需求为第一要务,必将给高校的学生管理工作带来不一样的气息。
学生管理的前瞻性变革体现在高校的学生管理工作积极面对学生突发事件,精准预测。一直以来,高校的安全稳定工作是重中之重,对于学生管理的突发事件应急处理要求管理者要居安思危、未雨绸缪。通过对学生在使用互联网过程中留下的足迹、关注的热点进行收集、整理、准确的分析和整合,可以提出精准预测,这是高校学生管理工作的一个新起点。如果在突发事件之前能够精准预测并逐步取代事后的统计描述,在问题发生之前提供前瞻性的指导,从而有效规避风险,无疑能够大幅提高学生管理工作效率和服务质量。
在大数据时代,学生管理的数据整合及利用还应克服传统教育管理的弊端,在认真做好海量的有关学生教育数据的搜集、整理、分析的基础上,将分析的结果,结合教育条件、学生特点等的变化,建立反应迅速、便捷高效的教育管理模式。首先,可以运用大数据技术,建立学生管理的预警机制和有针对性地干预、调控突发事件。通过对学生在校期间的一卡通使用记录、图书馆借阅数据、寝室住宿记录以及对学生在微信、qq空间、浏览过的网页地址、搜索引擎关键词等方面获得数据进行分析,可以及时监控学生思想和行为动态,从而有针对性地对学生进行教育管理和问题疏导。其次,通过海量采集学生数据,分析挖掘学生的思想、行为变化,并根据学生的专业、年龄、性格等特点进行分类指导,为千差万别的学生提供学习参考、情感指导、就业咨询。这种个性化的教育管理能够促进大学生在学习和实践中逐步修正错误、规避风险,从而督促高校的学生管理者转变观念,重服务轻管理,构建有利于青年成长的个性化的大学。
大数据时代的来临对高校的学生管理工作既是机遇也是挑战,高校的学生管理工作者一定要科学利用数据分析技术、积极应对新时期学生管理工作面临的种种变化,深入探寻学生管理工作中的规律和共性,创新性地解决各种问题,为不断提升高校学生管理工作水平提供强有力的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23