
互联网的大数据时代真来了?还是一直都在?
这几天在微信上看到很多关于互联网大数据的文章,也有人说大数据已经作为云计算、物联网之后IT行业又一大颠覆性的技术革命,Heven在想,互联网的大数据时代真来了?还是一直都在?其实,数据分析技术的运用已经悄然开始了,比如淘宝网、京东等购物网站监视着我们的购物习惯,百度、谷歌等搜索引擎监视着我们的网页浏览情况,新浪微博、腾讯微博好像对我们的朋友很熟悉,还有就是QQ和QQ空间总能给我们推荐那些似曾相识的朋友,但是Heven觉得我们离真正的大数据时代还有不小距离,但是一直都在。为什么这么说呢?
一、硬件条件不全:首先是网速的问题,大数据的处理必须要求高速的基础网络,而我国网络拥堵是普遍的现象,要解决现在大数据的处理是很难达到的,几乎是不可能的。
其次是处理信息的设备太少:据统计,互联网上一天产生的信息量大约有800EB,如果装在DVD光盘中要装1.68亿张、装在硬盘中要装80万个。而处理这些数据的互联网公司设备却极其少,如百度在京、山西和内蒙三地数据处理器才刚刚超过十万台,拥有70万个CPU和4000台服务器;腾讯数据平台设备8400台,单集群5600台,总存储100PB+;日新增数据200TB+,月数据增长率10%,日均JOB数100万,日均计算量5PB,但是腾讯数据总记录已经超过了375万亿条。可见现在设备是很难完全精准地处理这些互联网数据的,而大数据时代是能够完全处理现下数据并能实现精准定位网民的动向,所以说进入大数据时代还为时尚早。
二、专业型人才太少:Heven认为,大数据相关人才的欠缺将会成为影响大数据市场发展的一个重要因素,不可否认的是大数据处理人才的奇缺,不管是国家还是各大互联网公司都在加大对大数据处理人才的挖掘,如2014年5月19日,由中国人民大学、北京大学、中国科学院大学、中央财经大学、首都经济贸易大学五所高校联合组建的大数据分析硕士培养协同创新平台在中国人民大学启动;阿里集团2012年7月10日就已宣布,设立首席数据官岗位(CDO),负责推进“数据分享平台”战略。如此种种,说明大数据处理人才奇缺,也说明培养专业型大数据处理人才的迫在眉睫。
三、数据孤立,各自为战:目前国内互联网的现状是BAT三巨头各自为战,百度连接人和信息,独占了信息入口;阿里巴巴连接人和商品,独占了交易入口;腾讯连接了人和人,独占了社交入口。而他们都是死死的把握自己的入口,不让数据共享,试想这样怎样才能实现大数据化,一部分的数据又如何才能判断网民的真实意图?所以广告不能精准投放,网页的相关性不强,互联网的智能化发展只能在艰难进行。
Heven认为互联网的本质是理解用户并走向智能化,而大数据的精确处理也就是为了实现互联网的智能化,同时也是实现智能化的基础,但目前互联网大数据的处理还处在一个前期的阶段,不管是设备,人才,数据资源共享方面都是急需解决的问题,所以说,我们离真正的大数据时代还有不小距离。以上只是Heven的个人见解,表述的不是很完整,希望大家提出意见,共同进步。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16