京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在网络营销中的应用
什么是大数据?
根据我个人理解:在网络营销中,大数据就是通过不同的方法收集到客户以及潜在客户的信息资料,如客户喜好、联系方式、姓名、消费习惯等。
为何会想到使用大数据?
以前做SEO、电商推广的时候想的更多的是如何带来更多的流量,但是这几个月重新回到传统行业中,更加明白客户才是根本,而维护一个老客户的成本与开发一个新客户的成本是完全不对等的,流量旨在开发新客户,固然重要,但是网络营销想要营销,客户关系的维护与管理就更显重要了,而这其中大数据的收集与使用就是呼之欲出的了。
怎样收集大数据?
1.诱饵设计方案。如何获得客户信息资料,只有让客户主动将信息告诉我们才是最真实、有用的客户数据库。那么,如何让客户主动告知呢,这就是诱饵设计,有相应的诱饵,满足客户的需求与欲望,辅以相应的客户信息收集机制,客户不难将信息告知于你。譬如,你有一个行业内的精品且不公开的资料,需要这份资料的需要留下邮箱地址(当然也可以是QQ、微信、手机等),然后发送给留下的邮箱,相信需要这份资料的人不会不愿意留下他的邮箱地址的,这就是一份成功的用于收集客户数据的诱饵设计方案。
PS:因为这样的客户信息收集是客户主动提供,所以我们设计诱饵方案时必须考虑到用户的操作简单方便,越简单方便越好。
2.线下数据收集。其实,每个人、每一个生意都是有线下的圈子、客户的。尤其是对于现在进入电商的传统企业来说,线下客户数据是一份优质的资源,譬如经销商的客户购买信息的录入与整理等等。
3.相关相近行业合作。尤其是不同产品但是属于相同或相近行业的。萧伯纳说过:“你有一个苹果,我有一个苹果,我们彼此交换,每人还是一个苹果;你有一种思想,我有一种思想,我们彼此交换,每人可拥有两种思想。”,同理,这个道理用于客户数据的收集与整理也同样适用,如果有2个公司同为出售汽车产品,一个公司出售汽车灯,一个公司出售汽车坐垫,这样2家公司完全可以达成合作关系共享客户数据,这样可以增加一倍的潜在客户。
4.其他。如有某些平台出售客户信息资料。
常用的大数据信息有哪些?
个人觉得客户信息的收集当然是越完善越好,如客户喜好、阅读习惯、消费习惯、收入情况、工作、职位等等,这样能够更加完善的分析客户需求,当然,考虑到方便于利于分析的原因,我们现在网络营销中常规使用的客户信息主要有邮箱、QQ、电话、微信号等联系方式,然后根据对应行业分析几个重要的信息维度,以此组成完善的客户信息数据库。
大数据如何使用?
1. 信息的收集与整理。收集自然不必多说,重要的是在数据的整理。根据不同的维度有条理的整理,譬如根据联系方式(影响到内容推送渠道)、信息收集渠道(影响到内容推送政策、时间、产品需求等)。很简单的一个例子,一个公司经营有不同的产品,如果你没有在客户信息数据库中将客户信息分开整理列表,而是将所有的信息一股脑的都推送给同一个客户,那么造成的结果可能是:轻则推送的内容信息、产品不能达到应有的效果,做无用功,费时费力罢了;重则导致客户对推送的信息产生厌烦、抵触情绪,或取消关注的信息,或直接忽略,或直接放弃购买产品……。
2. 内容的推送。这个涉及到内容推送渠道(如微信、QQ、邮箱等)的选择与内容推送机制(如内容推送周期、内容定位、内容展示方法等)。确保信息能够及时、准确的传达到客户手上。这一个步骤与上一个步骤:信息的收集与整理是一脉相承的。
3. 效果的监控。内容发送到客户手上并不代表万事大吉,信息的展示量、点击量、咨询量、成交量(转化率)等数据监控是保证效果是否优秀的凭证,也是后期方案制定和改进的参考,所以一个合理的数据监控机制是必不可少的。
4.持续改进。大数据的利用是否合理,内容推送的时间是否恰当,内容推送是否合理,这个不是一蹴而就,不能一次性的完美,只有通过一次次的实践与数据分析,然后才能一步步的改善,使大数据的使用更加完美。
使用大数据的好处?
1.潜在客户的增加;1+1=2,信息的交流不同于2个人苹果的交换,如果能够建立相同、相近行业之间(其实相同的产品也是可以存在的,毕竟存在品牌、地区等方面的差异,要视具体情况而定)的合作联盟,并能够互相共享客户资源,如果有20个相同规模的企业,那么这20个企业就都有了相对于自己20倍的客户资源了;
2.客户关系的管理与维护;不论是传统企业与网络营销,客情关系的管理都是不可缺少的部分,利用大数据对客户分类整理,不同的时间、节日等等奉上不同的内容与活动,这对于企业的客户关系、企业形象、订单成交量、企业曝光量等等方面都有积极正面的作用。
3.赢利能力大大增强。网络营销的根本就是赢利,老客户多次购买能力的增强,更多潜在客户的挖掘,无疑会网络营销订单的增加有很大的促进作用。
结尾
当然,以上内容本人并没有亲自实践操作,只是本人经过电商推广工作后的一些想法!说起来容易,做起来当然不会简单,中间也会遇到更多的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31