京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言 Kolmogorov-Smirnov检验
Kolmogorov-Smirnov正态性检验
Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。其原假设H0:两个数据分布一致或者数据符合理论分布。
D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设。
R语言中的 Kolmogorov-Smirnov 检验
ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)
R语言中ks.test有四个参数,第一个参数x为观测值向量,第二个参数y为第二观测值向量或者累计分布函数或者一个真正的累积分布函数如pnorm,只对连续CDF有效。第三个参数为指明是单侧检验还是双侧检验,exact参数为NULL或者一个逻辑值,表明是否需要计算精确的P值。
> ks.test(rnorm(100),rnorm(50))
Two-sample Kolmogorov-Smirnov test
data: rnorm(100) and rnorm(50)
D = 0.16, p-value = 0.3503
alternative hypothesis: two-sided
> ks.test(rnorm(100),"pnorm")
One-sample Kolmogorov-Smirnov test
data: rnorm(100)
D = 0.0851, p-value = 0.4631
alternative hypothesis: two-sided
在上述第一个命令中,我们比较了两个均值和方差一样的观测值,他们D值很小,p值大于0.05,所以我们不能拒绝两个观测值分布相同的假设;在第二个命令中,我们比较了一个正态分布观测值和一个正态分布函数,D值很小,且p值大于0.05,不能拒绝其分布一致的假设。
> ks.test(rnorm(100),"punif")
One-sample Kolmogorov-Smirnov test
data: rnorm(100)
D = 0.5, p-value < 2.2e-16
alternative hypothesis: two-sided
在上述例子中,我们比较了一个正态分布数据和均一分布函数,p值小于0.05,我们可以拒绝原假设,二者分布不相同。
分布检验方法比较
² 图示法相对于其他方法而言,比较直观,方法简单,从图中可以直接判断,无需计算,但这种方法效率不是很高,它所提供的信息只是正态性检验的重要补充。
² 经常使用的拟合优度检验和Kolmogorov-Smirnov检验的检验功效较低,在许多计算机软件的Kolmogorov-Smirnov检验无论是大小样本都用大样本近似的公式,很不精准,一般使用Shapiro-Wilk检验和Lilliefor检验。
² Kolmogorov-Smirnov检验只能检验是否一个样本来自于一个已知样本,而Lilliefor检验可以检验是否来自未知总体。
² Shapiro-Wilk检验和Lilliefor检验都是进行大小排序后得到的,所以易受异常值的影响。
² Shapiro-Wilk检验只适用于小样本场合(3≤n≤50),其他方法的检验功效一般随样本容量的增大而增大。
² 拟合优度检验和Kolmogorov-Smirnov检验都采用实际频数和期望频数进行检验,前者既可用于连续总体,又可用于离散总体,而Kolmogorov-Smirnov检验只适用于连续和定量数据。
² 拟合优度检验的检验结果依赖于分组,而其他方法的检验结果与区间划分无关。
² 偏度和峰度检验易受异常值的影响,检验功效就会降低。CDA数据分析师学习
² 假设检验的目的是拒绝原假设,当p值不是很大时,应根据数据背景再作讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29