
大数据,新的战略资源_数据分析师考试
19世纪,海军军官出身的马修·方丹·莫里从库房发霉的木箱里发现了大量被海水浸泡过的航海日志,虽然是一些无章可循的东西,页面边上尽是奇怪的打油诗和乱七八糟的信手涂鸦,莫里却如获至宝,他从这些破损的航海日志中整理出了比如特定日期、特定地点的风、水和天气情况的记录,和20台“计算机”那些进行数据处理的人,把这些记录的信息绘制成表格。经过多年的努力,莫里最终绘制了多达120万数据点的导航图,让缺乏远洋经验的年轻海员们能够接受成千上万名经验丰富的航海家的指导,缩短航程,避开风险,抵达彼岸。
今天,越来越多的数据找到我们,覆盖我们,让我们不得不与之打交道,甚至成为其中的一部分。社交网络平台不仅给我们提供了寻找和维持朋友、同事关系的场所,也将我们日常生活的无形元素提取出来,转化为可作新用途的数据;像微博、Twitter这样的平台让人们能轻易记录以及分享他们零散的想法,从而使情绪化得以实现;淘宝、亚马逊这样的电子商务平台则将人们的购物喜好随时记录,将支付能力和信用进行数据化处理。今天的数据伴随着“随时记录、随时量化”而呈现爆炸式增长,就像莫里转化旧航海日志那样,通过存储、清洗、索引、分析,把信息转化为对现在的判断和将来的预测:小到我们可以认识谁,在哪里存在一份心仪的工作,大到预测流感爆发,编制国民幸福指数。
最近两年所产生的数据量等同于2010年以前整个人类文明产生的数据量总和,到2020年,全世界的信息如果装成光盘,光盘重量等于424艘美国尼米兹级航母。牛津大学互联网研究所Mayer-Schonberger教授指出,“大数据”所代表的是当今社会所独有的一种新型的能力以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。而麦肯锡报告指出,只要具有适当的政策推动,大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
《大数据时代》作者维克托指出:“在亚当·斯密论述18世纪劳动分工时所引用的著名的大头针制造案例中,监督员需要时刻看管所有工人、进行测量并用羽毛笔在厚纸上记下产出数据,而且测量时间在当时也较难把握,因为可靠的时钟尚未普及。技术环境的限制使古典经济学家在经济构成的认识上像是戴了一副墨镜,而他们却没有意识到这一点,就像鱼不知道自己是湿的一样。因此,当他们在考虑生产要素(土地、劳动力和资本)时,信息的作用严重地缺失了。”
而今天,随着互联网技术的发展,数据的采集、存储和使用成本迅速下降。过去50年中,存储密度增长了5000万倍,这使得大数据成为匹敌土地、劳动力和资本的新的生产要素,成为新的战略资源。在医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;在公共管理领域,能够利用大数据有效推动税收征管,提高教育部门和就业部门的服务效率;在零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;在市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内,找到更合适的产品以满足自身的需求,提高附加值。
亚马逊前任首席科学家Andreas Weigend简单直白地指出: “数据是新的石油。” IBM提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
未来,伴随着社交媒体、移动计算技术以及物联网的发展,各类传感器等嵌入系统的广泛应用,人类取得的数据量将以一千倍为单位持续激增。在这一背景下,数据储备和数据分析能力将成为未来新型国家最重要的核心战略能力。然而,现有的数据分析工具在数据的表示方法、计算模式、价值挖掘等领域的瓶颈如何突破,对数据质量、价值、权益、隐私、安全等的重新认识与措施保障,如何推动数据开放与交易,形成新的商业模式,产生新的商业链条,这些都将成为企业与政府面临的重大考验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30