
大数据是飞凡网以智取胜的关键_数据分析师考试
在互联网发展成熟的今天,大数据、云计算、智慧化等词几乎每天都在大众耳边萦绕,这是未来趋势。一直备受关注的飞凡网要想在搭建购物中心开放性大平台中以“智”取胜,成为行业领域的标杆,那么大数据就是其成功的关键因素之一。对于线下购物中心来说,要想抗衡互联网冲击,那么玩转大数据也是必要的。飞凡网在大数据方面拥有的资源和优势或许能够给购物中心的转型带来更多助益。
问题一:智慧从哪获取?
人类智慧的来源主要是从书本,以及在社会经历中获取信息,经过大脑处理分析、总结而来,互联网智慧也是同样道理,它用“0和1”将人类的行为转化成数据,进行分类处理,再由人进行分析、形成具象的画面,帮助人类营造充满想象力的生活,换句话说,智慧商业需要大数据才能体现价值。
问题二:智慧怎么帮助购物中心达到目的?
没有大数据之前,购物中心在分析消费者习惯、商户需求、制定活动促销策略时,要么凭借多年经验、要么费时费钱的做现场调研,按照一个相对武断的结果,对购物中心发展进行指导。这其中产生的试错成本、人力成本和时间成本是不可估量的。如果有了大数据,购物中心提高“智商”之后,这些成本可以降到最低。
举个例子,以玩转大数据出名的美国百货公司梅西百货,会根据消费者的购物路线、每个店的停留时间描绘出个体的重点购物区域,对他们进行个体区分,为企业在展台布置、展品摆放等方面提供很多信息,从而帮助企业有针对性的开展促销来提升其销量。此外,梅西APP的智能试衣间、在线支付、图像搜索等依托大数据建设的智能购物体验也帮助它俘获了不少消费者的心,于是,在国内百货业跌入冰点发展的时期,梅西百货的净利润增长还能保持在20%以上。也就是说,已经被互联网改变生活方式的消费者,需要“智”取。
梅西百货的大数据运营模式,如今在中国的购物中心身上一样可以实现,而且会很快。飞凡、喵街等购物中心电商开放平台的推出,能够更好地帮助购物中心以轻姿态构建大数据。
以飞凡电商开放平台为例,它目前的大数据处理能力可以帮助购物中心实现数据可视化,提供分析报表、消费者画像等,进而指导购物中心针对不同群体发起实时的新品和优惠推送。
同时,飞凡大数据还能帮助购物中心针对不同商户进行客流、销售和物业管理等方面的分析,有效调整招商策略、定价策略、活动策略和服务策略等,通过数据采集处理、数据挖掘分析等个性化解决方案,构建智慧商业生态。
在“互联网+”逐渐兴起的时代,商业之间竞争是异常激烈的,要想立足于长远,那么就必须要有能够以“智”取胜的地方。飞凡网拥有“腾百万”丰富的线上线下资源,还有庞大的会员基础,大数据必然是其取得成功的关键因素。购物中心要玩转大数据,与飞凡网合作不失为一个快速发展的最优之选。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01