京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可视化应用领域探析-数据分析师考试
大数据之热度,已无需多言。业内众多关于大数据可视化应用领域的声音与讨论,大多集中在行业领域和业务领域,比如应用在商业智能、政府决策、公共服务、市场营销领域,比如应用在金融行业、电力行业、通讯行业、工业制造、医疗保健行业等。
就大数据可视化应用分类,笔者专访了在大数据可视化领域拥有多年经验的数字冰雹公司CEO邓潇,他从数据可视化展现形式的角度,将大数据可视化应用领域分类为:宏观态势可视化、设备仿真运行可视化、数据统计分析可视化。并通过若干代表性图例向笔者展示了这种分类的实际应用,能够帮助大家更加深刻地体会数据可视化如何化繁为简,如何使数据变得更有意义、更容易理解。
同时,邓潇表示:发达国家一些大牌IT企业已提前发力,通过加大开发力度和兼并等多种手段,努力向大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。因此,我们必须拥有自主研发的大数据可视化产品,以保证中国企业在此轮大数据浪潮前进的路上没有后顾之忧。
应用领域一、宏观态势可视化
态势可视化是在特定环境中对随时间推移而不断动作并变化的目标实体进行觉察、认知、理解,最终展示整体态势。此类大数据可视化应用通过建立复杂的仿真环境,通过大量数据多维度的积累,可以直观、灵活、逼真地展示宏观态势,从而让非专业人士很快掌握某一领域的整体态势、特征。
案例一、全球航班运行可视化数字冰雹制作的全球航班运行可视化系统,通过将某一时段全球运行航班的飞行数据进行可视化展现,大众可以很清晰的得以了解全球航班整体分布与运行态势情况。
案例二、卫星分布运行可视化通过将宇宙空间内所有卫星的运行数据进行可视化展示,大众可以一目了然宇宙空间的卫星态势。
应用领域二、设备仿真运行可视化
通过图像、三维动画以及计算机程控技术与实体模型相融合,实现对设备的可视化表达,使管理者对其所管理的设备有形象具体的概念,对设备所处的位置、外形及所有参数一目了然,会大大减少管理者的劳动强度,提高管理效率和管理水平,是“工业4.0”涉及的“智能生产”的具体应用之一。
案例一、工业设备运行可视化采用三维制作及后期处理软件模拟机械的外形、材质、零部件和内部构造,从而将机械的设计原理、工作过程、性能特征、使用方式等一系列真实的事物以动态视频的形式演示出来。
案例二、军工领域战场设备可视化在战场环境中对作战区域内随时间推移而不断动作并变化的作战实体进行可视化展示。了解敌我双方的兵力部署,进而指挥部署我方的兵力应对和决策。
案例三、卫星运行可视化卫星可视化可以了解大范围卫星态势,并对卫星的轨道、在轨姿态、卫星所执行的任务可视化呈现,主要包括:飞行、变轨、侦查,扫描,数据传输等等。除此之外,对卫星回传的数据,卫星自身的状态,也有针对性的可视化分析和监测。
应用领域三、数据统计分析可视化
此领域是目前媒体大众提及最多的应用,可用于商业智能、政府决策、公众服务、市场营销等领域。一、商业智能可视化通过采集相关数据,进行加工并从中提取能够创造商业价值的信息,面向企业、政府战略并服务于管理层、业务层,指导经营决策。商业智能可视化负责直接与决策者进行交互,是一个实现了数据的浏览和分析等操作的可视化、交互式的应用。他对于决策人获取决策依据、进行科学的数据分析、辅助决策人员进行科学决策显得十分重要。因此商业智能可视化系统对于提升组织决策的判断力、整合优化企业信息资源和服务、提高决策人员的工作效率等具有显著的意义。
二、精准营销可视化通过大数据分析和挖掘用户群的文化观念、消费收入、消费习惯、生活方式等数据,将用户群体划分为更加精细的类别,根据用户群的不同制定不同品牌推广战略和营销策略,提高用户的忠诚度、培养能为企业带来高价值的潜在客户,提升市场占有率。
三、智能硬件数据可视化智能硬件是继智能手机之后的一个科技概念,通过软硬件结合的方式,让设备拥有智能化的功能。智能化之后,硬件具备了大数据等附加价值。智能硬件已经从可穿戴设备延伸到智能电视、智能家居、智能汽车、医疗健康、智能玩具、机器人等领域。而硬件采集上来的数据需要可视化将其价值呈现。例如我么可以通过使用智能技术来追踪个人的健康状况、情感状况,优化行为习惯等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16