京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下,传统媒体的危机_数据分析师考试
媒体是一个特殊的产业,它似乎总是走在时代的前沿,它们会发现、揭示、监督,也会摇旗呐喊。但是作为媒体从业者,我们又有多少人在扮演着这些变化的参与者,而非旁观者的心态。我们在传递信息和知识,但我们却很少思考这些信息和知识可能会对我们的影响。我们似乎在秉承着以不变应万变的思路,但是因着媒体也面临着销售压力,所以我们会常常在谁给我们钱,以及谁才是我们真正收入来源者中间摇摆。媒体人很困惑,也很挣扎。虽然我们会玩那些最时髦,但是只是为了附庸风雅。我们会说那些最流行的,只是因为我们是媒体。读者和网友们喜欢免费的信息,但他们也在撇弃那些放水的免费信息。如何尊重,并和媒体受众进行互动,将是有价值媒体内容的来源,也会带来真正媒体品牌的建立。
最近一直在接触大数据的相关资料,非常清楚大数据时代会如互联网一样势不可挡。同样,媒体除了宣传和提醒之外,也将身不由己地进入大数据时代。那么大数据对现代媒体产业会带来怎样的影响呢?
首先看看媒体的收入来源,从目前各类媒体(包括电视、杂志、报纸或者户外、网络)来看,绝大多数的媒体收入是广告。在一个竞争惨烈的市场中,企业的营销人员需要通过广告来建立、影响和拓展,客户对其品牌的认知。在2011年,全球在品牌投入上费用达到5000亿美元,当然,这个数字还不包括在线媒体的投入。即便在2012年,据有关信息显示,在线媒体的品牌投入也只有10%,但是这个趋势是在增长中。
再者,我们看看媒体的演变。媒体的演变已经很多年了,从单向的信息传播,到今天的社交媒体涌现出来的多维传播。人们的阅读方式和获取信息的方式都在发生变化,今天我的很多朋友是通过每天定点的刷微博来获得信息,当然在获得的时候,他们也在分享信息。每个人都是信息的载体和获取者。因着移动互联的便捷,越来越多的,有购买力的人开始花大量的时间沉浸在社交媒体上,他们也为此乐此不彼。可以想象,不久的将来,媒体的内容来源,以及媒体的交互形式将越来越多样化,社会化媒体已经风头渐进。传统媒体若没有与受众的交互,将只是鸣的锣和响的跋,毫无乐感可言。事实上,今天很多媒体也只是以每年的销售额来定义每年的目标,他们并不真正理解自己定位的人群,更别谈和自己的目标读者一起成长。
接下来我们需要看看企业市场人员为何在媒体投放?因为市场竞争激烈,品牌的影响收到挑战,人们希望借助媒体在目标人群中的影响力,而对其目标客户带来影响。所以对于那些有精准定位的媒体,又能在目标人群确实带来影响的媒体,会得到更多的市场人员青睐。因为在这些媒体的投放是得到的正向反馈,也会对他们的市场活动产生积极的影响。现在,几乎很多企业的市场人员都会对其投放的媒体进行评估,这种评估形式是多种多样的。对于传统媒体而言,这种评估历经很多年,相对评估模式比较单一,也能被大多数市场人员所接受。对于一些在线媒体的评估,现在的评估方法也是搜索、广告位的转化率等。不过,这些方式都只是得到客户的行为结果,而对于品牌建立的有效性,以及长久性,还是缺乏真实的体认。企业的市场人员依然有挥之不去的苦楚。
那么,为什么社交媒体虽有众人欢呼,却依然无法登堂入室呢?关键是企业的市场人员尚未找到评估社交媒体的好模式。但是大数据的出现,这样的状况将发生质的改变。因为大数据最终将让市场人员可以定义、评测和管理那些对他们品牌产生积极影响的部分。Hadoop, Cassandra, Mahout 和Pig等技术,伴随着一些语义分析软件、语言处理软件、机器认知软件、集群分析等,可以揭示出在线市场行为的真实结果。市场人员对社交媒体的看法将出现颠覆。随着实现大数据的成本越来越低,市场人员完全可以符合CEO、CFO和COO的话语来描述品牌在市场中的影响。通过大数据分析产生的洞察力也可以会反过来支撑市场活动来帮助品牌参与行为真正地成规模。可以预见,随着大数据的出现,企业市场人员对促进品牌参与规模的市场行为会发生基本的转移。品牌营销的市场将从通过大众传播在人们中建立品牌进行品牌沟通,到通过大量的交流者之间人们的交流,让品牌的世界得到创建、发展和扩大。社交媒体不仅会提供企业市场人员一种广告模式,也是真正规模化参与的能力。
大数据让社交媒体的价值被重新定位,同样企业市场人员也会重新评估自己在媒体上的投入分配。如果按照ROI的考量,以及未来的变化,今天的传统媒体需要根据技术的发展,重新定位和调整自己,让自己可以随着市场规模的扩大,而有更多新生,而非走向没落,自己成为自己的掘墓者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01