京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下,传统媒体的危机_数据分析师考试
媒体是一个特殊的产业,它似乎总是走在时代的前沿,它们会发现、揭示、监督,也会摇旗呐喊。但是作为媒体从业者,我们又有多少人在扮演着这些变化的参与者,而非旁观者的心态。我们在传递信息和知识,但我们却很少思考这些信息和知识可能会对我们的影响。我们似乎在秉承着以不变应万变的思路,但是因着媒体也面临着销售压力,所以我们会常常在谁给我们钱,以及谁才是我们真正收入来源者中间摇摆。媒体人很困惑,也很挣扎。虽然我们会玩那些最时髦,但是只是为了附庸风雅。我们会说那些最流行的,只是因为我们是媒体。读者和网友们喜欢免费的信息,但他们也在撇弃那些放水的免费信息。如何尊重,并和媒体受众进行互动,将是有价值媒体内容的来源,也会带来真正媒体品牌的建立。
最近一直在接触大数据的相关资料,非常清楚大数据时代会如互联网一样势不可挡。同样,媒体除了宣传和提醒之外,也将身不由己地进入大数据时代。那么大数据对现代媒体产业会带来怎样的影响呢?
首先看看媒体的收入来源,从目前各类媒体(包括电视、杂志、报纸或者户外、网络)来看,绝大多数的媒体收入是广告。在一个竞争惨烈的市场中,企业的营销人员需要通过广告来建立、影响和拓展,客户对其品牌的认知。在2011年,全球在品牌投入上费用达到5000亿美元,当然,这个数字还不包括在线媒体的投入。即便在2012年,据有关信息显示,在线媒体的品牌投入也只有10%,但是这个趋势是在增长中。
再者,我们看看媒体的演变。媒体的演变已经很多年了,从单向的信息传播,到今天的社交媒体涌现出来的多维传播。人们的阅读方式和获取信息的方式都在发生变化,今天我的很多朋友是通过每天定点的刷微博来获得信息,当然在获得的时候,他们也在分享信息。每个人都是信息的载体和获取者。因着移动互联的便捷,越来越多的,有购买力的人开始花大量的时间沉浸在社交媒体上,他们也为此乐此不彼。可以想象,不久的将来,媒体的内容来源,以及媒体的交互形式将越来越多样化,社会化媒体已经风头渐进。传统媒体若没有与受众的交互,将只是鸣的锣和响的跋,毫无乐感可言。事实上,今天很多媒体也只是以每年的销售额来定义每年的目标,他们并不真正理解自己定位的人群,更别谈和自己的目标读者一起成长。
接下来我们需要看看企业市场人员为何在媒体投放?因为市场竞争激烈,品牌的影响收到挑战,人们希望借助媒体在目标人群中的影响力,而对其目标客户带来影响。所以对于那些有精准定位的媒体,又能在目标人群确实带来影响的媒体,会得到更多的市场人员青睐。因为在这些媒体的投放是得到的正向反馈,也会对他们的市场活动产生积极的影响。现在,几乎很多企业的市场人员都会对其投放的媒体进行评估,这种评估形式是多种多样的。对于传统媒体而言,这种评估历经很多年,相对评估模式比较单一,也能被大多数市场人员所接受。对于一些在线媒体的评估,现在的评估方法也是搜索、广告位的转化率等。不过,这些方式都只是得到客户的行为结果,而对于品牌建立的有效性,以及长久性,还是缺乏真实的体认。企业的市场人员依然有挥之不去的苦楚。
那么,为什么社交媒体虽有众人欢呼,却依然无法登堂入室呢?关键是企业的市场人员尚未找到评估社交媒体的好模式。但是大数据的出现,这样的状况将发生质的改变。因为大数据最终将让市场人员可以定义、评测和管理那些对他们品牌产生积极影响的部分。Hadoop, Cassandra, Mahout 和Pig等技术,伴随着一些语义分析软件、语言处理软件、机器认知软件、集群分析等,可以揭示出在线市场行为的真实结果。市场人员对社交媒体的看法将出现颠覆。随着实现大数据的成本越来越低,市场人员完全可以符合CEO、CFO和COO的话语来描述品牌在市场中的影响。通过大数据分析产生的洞察力也可以会反过来支撑市场活动来帮助品牌参与行为真正地成规模。可以预见,随着大数据的出现,企业市场人员对促进品牌参与规模的市场行为会发生基本的转移。品牌营销的市场将从通过大众传播在人们中建立品牌进行品牌沟通,到通过大量的交流者之间人们的交流,让品牌的世界得到创建、发展和扩大。社交媒体不仅会提供企业市场人员一种广告模式,也是真正规模化参与的能力。
大数据让社交媒体的价值被重新定位,同样企业市场人员也会重新评估自己在媒体上的投入分配。如果按照ROI的考量,以及未来的变化,今天的传统媒体需要根据技术的发展,重新定位和调整自己,让自己可以随着市场规模的扩大,而有更多新生,而非走向没落,自己成为自己的掘墓者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22