
如何让“大数据”更好为企业运营服务_数据分析师考试
尽管不断有人声称,数据洪流将导致厄运来临,但IT行业却始终能够通过改进计算基础架构,使它们速度更快、容量更大、价格更便宜、体积更小巧,从而让挥之不去的信息“大决战”预言不攻自破。
今天,通过使用列式分析基础架构,组织机构便可对“大数据”带来的焦虑置之不理,相反,还能够让“大数据”更好为企业运营服务。在列式数据库中,用户可以随时调用和分析大数据集,即使对诸如非结构化数据等各种数据类型的大数据集亦是如此。它们不仅随时可用,而且执行速度更快,还能根据工作要求,更方便地扩展,从而为尽可能多的用户服务,涵盖尽可能多的数据。
这种做法其实就是挖掘组织机构内外部的“大数据”,并提取有价值的部分供企业使用。它的目的是让组织机构更灵活、更具竞争力,提高组织机构的盈利能力。
对于部署一个分析数据仓库而言,最重要的步骤之一就是找到质量合格的数据。从数据净化到采用数据管理总策略——用于确保数据质量的技术已经成熟。获取最优质数据时还要对其进行内部审核。
·数据延迟:需考虑组织内部数据延迟的三个方面:数据发生时机、事件延续时间、决策所需时间。
·数据关联:与商业用户合作确定数据的前后关系,并就使用中的多个数据集建立相互联系,同时还需要考虑数据增长率以及重复的来源。
·自助使用:确定高级用户如何在不影响IT或其他资源的情况下,对用于查询的数据实施控制。
·首席数据官:指定一名高级职员担任首席数据官的职务,使其能够在维持组织治理的同时保证数据的可操作性。
数据质量的重要性再怎么强调也不为过。以comScore为例,作为一家为电子商务市场提供分析服务和解决方案的云计算公司,该公司从创立伊始就意识到,网络营销的重点正从访客数量转变为盈利性。comScore的“客户知识平台”(Customer Knowledge Platform)针对顾客浏览互联网的行为与偏好提供了全方位的观察视角。该服务追踪所有愿意提供互联网行为以供分析的用户,记录他们在各个网站的冲浪以及购买行为。
随着数以百万计的网络用户注册该服务接受监测,comScore收集到了海量数据。事实上,comScore所分析的压缩数据达到40 TB以上,每周都会新增接近150 GB。令人印象深刻的是,尽管数据量如此庞大,您却无需耗费时间焦急等待查询结果。据comScore工程事业部副总裁Ric Elert称,由于上述原因,“我们得以更加迅速地挖掘数据,并为客户提供结果。这有助于他们提高营销效率,开发出更多业务。”
此外,该公司使用列存储技术,实现了40%的压缩率。comScore表示,若使用传统方法,存储成本会比现在高很多。数据仓库副总裁Scott Smith说道:“由于我们面对的是海量的数据,压缩对我们而言至关重要。我们拥有的数据储量如此庞大,是大多数人从未见过的。”
西班牙Airtel Vodafone公司的列存储数据仓库可根据公司的业务地图进行信息组织。尽管很多不同的部门都使用同样的数据,但Airtel Vodafone仍然能够有效保证信息的一致性和完整性。数据仓库将数据转换成知识,通过一个接口,将现实世界中的事实转化为有价值的商业情报。准确分析和预测客户行为的能力是Airtel Vodafone公司整体业务战略的关键所在。
有了列式数据仓库,用户可根据工作流(而不是按照企业的层级结构)需要获取信息,这提高了员工的工作效率和有效性。换言之,从事市场营销的用户与从事财务工作的用户(举例而言)使用的是相同的信息,只是他们接触数据的角度有所不同,分析目的也各不相同。数据仓库环境包含了市场营销数据库、呼叫系统、客户服务、全球移动通信系统统计数据、开票系统、收账与检索,以及所有的后勤管理信息。
如今,Airtel Vodafone拥有一个理想的运行环境,能够满足各种需求,从而让存储在各种运行环境中的数据实现快速、低成本的集成。因此,它可以直接从数据仓库平台中调用有关公司活动的详细信息或汇总信息。基于列存储的数据仓库使Airtel Vodafone公司赢得了市场份额,成为欧洲电信业中的一方诸侯。
当今,分析行业也没有任何借口不使用“大数据”。无论是扩大分析数据仓库、涵盖数以千计的用户,还是分析来自各种奇特来源的各类数据(如来自社交媒体网站的海量非结构化信息),它们都没有逃脱的借口。不要再躲避了,分析行业再也不能躲在“大数据”这个吓人的怪物身后,因为我们知道,通过使用列式分析基础架构,就能够让“大数据”更好为企业运营服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18