京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何让“大数据”更好为企业运营服务_数据分析师考试
尽管不断有人声称,数据洪流将导致厄运来临,但IT行业却始终能够通过改进计算基础架构,使它们速度更快、容量更大、价格更便宜、体积更小巧,从而让挥之不去的信息“大决战”预言不攻自破。
今天,通过使用列式分析基础架构,组织机构便可对“大数据”带来的焦虑置之不理,相反,还能够让“大数据”更好为企业运营服务。在列式数据库中,用户可以随时调用和分析大数据集,即使对诸如非结构化数据等各种数据类型的大数据集亦是如此。它们不仅随时可用,而且执行速度更快,还能根据工作要求,更方便地扩展,从而为尽可能多的用户服务,涵盖尽可能多的数据。
这种做法其实就是挖掘组织机构内外部的“大数据”,并提取有价值的部分供企业使用。它的目的是让组织机构更灵活、更具竞争力,提高组织机构的盈利能力。
对于部署一个分析数据仓库而言,最重要的步骤之一就是找到质量合格的数据。从数据净化到采用数据管理总策略——用于确保数据质量的技术已经成熟。获取最优质数据时还要对其进行内部审核。
·数据延迟:需考虑组织内部数据延迟的三个方面:数据发生时机、事件延续时间、决策所需时间。
·数据关联:与商业用户合作确定数据的前后关系,并就使用中的多个数据集建立相互联系,同时还需要考虑数据增长率以及重复的来源。
·自助使用:确定高级用户如何在不影响IT或其他资源的情况下,对用于查询的数据实施控制。
·首席数据官:指定一名高级职员担任首席数据官的职务,使其能够在维持组织治理的同时保证数据的可操作性。
数据质量的重要性再怎么强调也不为过。以comScore为例,作为一家为电子商务市场提供分析服务和解决方案的云计算公司,该公司从创立伊始就意识到,网络营销的重点正从访客数量转变为盈利性。comScore的“客户知识平台”(Customer Knowledge Platform)针对顾客浏览互联网的行为与偏好提供了全方位的观察视角。该服务追踪所有愿意提供互联网行为以供分析的用户,记录他们在各个网站的冲浪以及购买行为。
随着数以百万计的网络用户注册该服务接受监测,comScore收集到了海量数据。事实上,comScore所分析的压缩数据达到40 TB以上,每周都会新增接近150 GB。令人印象深刻的是,尽管数据量如此庞大,您却无需耗费时间焦急等待查询结果。据comScore工程事业部副总裁Ric Elert称,由于上述原因,“我们得以更加迅速地挖掘数据,并为客户提供结果。这有助于他们提高营销效率,开发出更多业务。”
此外,该公司使用列存储技术,实现了40%的压缩率。comScore表示,若使用传统方法,存储成本会比现在高很多。数据仓库副总裁Scott Smith说道:“由于我们面对的是海量的数据,压缩对我们而言至关重要。我们拥有的数据储量如此庞大,是大多数人从未见过的。”
西班牙Airtel Vodafone公司的列存储数据仓库可根据公司的业务地图进行信息组织。尽管很多不同的部门都使用同样的数据,但Airtel Vodafone仍然能够有效保证信息的一致性和完整性。数据仓库将数据转换成知识,通过一个接口,将现实世界中的事实转化为有价值的商业情报。准确分析和预测客户行为的能力是Airtel Vodafone公司整体业务战略的关键所在。
有了列式数据仓库,用户可根据工作流(而不是按照企业的层级结构)需要获取信息,这提高了员工的工作效率和有效性。换言之,从事市场营销的用户与从事财务工作的用户(举例而言)使用的是相同的信息,只是他们接触数据的角度有所不同,分析目的也各不相同。数据仓库环境包含了市场营销数据库、呼叫系统、客户服务、全球移动通信系统统计数据、开票系统、收账与检索,以及所有的后勤管理信息。
如今,Airtel Vodafone拥有一个理想的运行环境,能够满足各种需求,从而让存储在各种运行环境中的数据实现快速、低成本的集成。因此,它可以直接从数据仓库平台中调用有关公司活动的详细信息或汇总信息。基于列存储的数据仓库使Airtel Vodafone公司赢得了市场份额,成为欧洲电信业中的一方诸侯。
当今,分析行业也没有任何借口不使用“大数据”。无论是扩大分析数据仓库、涵盖数以千计的用户,还是分析来自各种奇特来源的各类数据(如来自社交媒体网站的海量非结构化信息),它们都没有逃脱的借口。不要再躲避了,分析行业再也不能躲在“大数据”这个吓人的怪物身后,因为我们知道,通过使用列式分析基础架构,就能够让“大数据”更好为企业运营服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01