京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据成营销核心驱动力 营销人员如何制胜_数据分析师考试
据IBM统计,世界上每天产生的数据量达到250万字节再乘以三次方,足够填满5.31亿张DVD光盘。在世界上所有的信息数据中,90%产生于过去两年。IBM大数据处理软件集团市场营销总监Graeme Noseworthy表示:“很长时间以来,我们专注于以人力资源为依托的业务生意,而现在逐渐向以数据驱动的组织架构转变,这种形式将让我们以客户为中心的水平达到前所未有的高度。”
大数据爆炸要求公司不再依靠直觉做决策。在利用新数据驱动型客户情报方面,营销人员倍感压力。难怪对大数据的浓厚兴趣已成为营销员最抢手的素质之一。然而,最近Corporate Executive Board(以下简称CEB)在对《财富》1000家公司中近800名营销人员调研得出:绝大多数的营销人员仍依赖直觉——而少数积极使用大数据的人做得也并不好。以下是我们的重要发现:
多数人过多依赖直觉
平均说来,营销人员在所有客户相关决策中,仅有11%的决策依赖数据。事实上,当我们要求营销人员仔细想想他们近期做决定时采用的信息时,他们表示,超过一半的信息是来自经验或对客户的直觉。他们最后才考虑数据——追踪与经理、同事的谈话,专家建议和与客户的一次性互动。
但在今天多变的商业环境中,依靠过去的经验来做决策越来越不靠谱。随着消费者行为的不断变化,曾经有效的假设(如,“年纪大的消费者不会使用Facebook或发送信息”)会马上过时。
多数人不擅长统计学
当我们用五个中低难度的问题来测试营销人员的统计能力时,接近一半(44%)的人做错了四道或五道题,仅仅6%的人做对了所有的测试题。所以仅有5%的营销人员拥有统计学教科书令我们不足为奇。
有些人过度使用数据
虽然多数营销人员未充分利用数据,但是有一小部分(11%)人仍感觉用不够。这些人每天都关注数据变化,他们完全依赖于数据做大多数决策。他们是“联接”型人格并喜欢外部激励——所以他们喜爱数据以及任何形式的反馈,包括来自营销效果、经理或同事的信息、以及同他人频繁互动带来的数据。我们将这些人称之为“联结者”,而他们正是多数CMO寻找的人才。但是这种类型的营销人员经常是业绩欠佳者(他们的业绩评级低于其他营销人员的平均水平)。问题是,他们缺乏有效使用数据的统计素质或者判断力。每当他们看见一个新的标准,他们就会做出调整——结果他们经常改变方向,以至于丢失了最终的目标。在管理岗位上,这些人无休止的演习活动(fire drills),妨碍他人长时间坚持项目,以达到最好的结果,从而给公司带来了巨大的破坏性。更糟的是,很多市场营销课程(尤其是直复营销、数字营销和忠诚营销)总是在不经意间鼓励这种行为,结果令问题被放大。那是因为信息板经常捕获诸如点击、打开率之类的基础指标,而这些指标与顾客忠诚度、价值这些更重要指标关联性不强,然而营销人员因改善回应数据模型而获得奖励。
集中于目标、过滤干扰因素
经理们认为今天顶级营销人员应该具备三个关键素质:适应不确定性的能力、基于数据询问战略问题的能力、将注意力集中在高阶目标的能力。这些特质有助于营销人员过滤掉干扰因素,并且只将见解或数据点应用到事关长期成功的方面上。当营销人员能更好的接触到原始数据,并且大数据保持增长时,这种过滤干扰的能力将越发重要。
对于营销领袖来说,坏消息是具备过滤干扰因素能力的人寥寥无几(大约只有10%的营销人员擅长此能力),并且这种能力很难通过教授获得。好消息是,一个拥有良好指导团队的环境将保护营销人员免受干扰因素打扰——时刻提醒,以防目标偏离航线。为了更加有效地使用数据,最好的商业领袖持续重述他们的商业目标(保持他们不受外界影响),并教授营销人员在做决定时,将数据置于第一位,核心位置。并锻炼营销人员对常见、错误的数据解释的敏感性。遵循以上措施能够让即使是最容易分心的数据爱好者也能超预期完成任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21