
大数据时代知识的停止点_数据分析师考试
毫无疑问,信息超载作为一种生活方式,已经挟裹着众生的生活。戴维·温伯格《知识的边界》所尝试的,恰是在大数据时代,如何认知网络下的知识与科学。因为,不管确定“互联网+”,还是定义“互联网-”,都要面对今日“事实不再是事实”,而“专家随处可见”的现实。
显然需要理清思路,理性面对这一切。你要学会像戴维一样,冷静地打着比方,包括以转述的方式,向自己的见解缓步、轻松而去——
美国出版公司兰登书屋的创始人之一贝内特·瑟夫出版的一本书里就讲过这么个奇闻轶事:
一天,《哈波斯》杂志的卡斯·坎菲尔徳在编辑部接待一位长相甜美却个性坚决的妇女。这位女同胞很想讨论她自己正在创作的第一本小说。“一本小说应该是多长的篇幅?”她问道。
“这个问题没有确切的答案,”坎菲尔德解释道,“一些像《伊登·弗洛姆》这样的小说,大概只有4万字。而其他的小说,如《飘》,却可能达到30万字。”
“但,普通小说的平均长度大概是多少字?”妇女坚持问道。
“呃,我觉得大概是8万字吧。”坎菲尔德回答。
妇女跳了起来,并欢呼着。“感谢上帝!”她喊道。“我的小说完结了!”
戴维转述这则逸闻并不是让大家简单地笑上一笑。戴维想说的是,面对太多的信息而无法全部知道的事实,其实我们的战略一直是建立一个知识的停止点(stopping points)系统。这是个很有效的方法,很实用于保存和交流知识的纸质媒介。
戴维列举的另一伟大实例同样能说明问题。1836年,达尔文从“小猎犬号”航行归来,完成了将促进他进化论理论的观察。1838年,达尔文对自己的理论有了清晰的想法。1842年,他用铅笔写下了35页的“骨架”,但没有公开。1844年,他写了189页的手稿,没有公开,但指示妻子,如果他死了就将手稿出版。接下来的15年,他研究了藤壶,出版了8本书,生了9个孩子,并且经常和同事通信往来讨论。他还开始了实验科学。但他就是没有出版自己的进化论。他似乎在等着什么?有一天他收到了年轻的博物学家阿尔弗雷德·罗素·华莱士写来的一封信,此后华莱士又寄给了达尔文一份20页的文稿,里面提到的理论和达尔文的进化论基本相似。达尔文万分惊讶,他想成为这个理论的最早提出者,但不想欺骗华莱士,或者怕更为糟糕,让自己看起来是窃取了华莱士的观点。在听取两位亲密同事意见后,1858年7月,伦敦林奈学会安排宣读了华莱士的一篇文章,以及达尔文的两篇文章。林奈学会在自己的杂志上刊发这些文稿后,达尔文才开始在科学家圈内引起关注。这个鼓舞,让达尔文经过13个月的写作,完成了不朽的《物种起源》。达尔文和华莱士的故事,后世有多种解读。纸质出版模式静静地塑造了科学,这是一个例子。同时,那个停止点,格外清晰。
传统的知识是纸的意外产物。没有什么时候,我们对纸的认识这么明确过。纸上的知识,纸上的科学,曾经是一种出版的类型,它们经过层层过滤,才能在纸上“行走江湖”。但今天,纸质悄然换作网络。在此背景下,如有达尔文和华莱士的故事上演,恐怕要重新演绎,且绝不会如此安安静静,按部就班,起承转合。
能够明确的是,权威在网络化时代仍然会是一个停止点,但“权威已经不再是一个主要由有资质的人所构成、专门生产特级产品的特殊阶层了”。相反,权威更多地是由功能性来定义,如你的体验一般:权威是你在无数连接中访问的那个最后一个页面——是你决定不再继续去点击其他链接的那个页面。
正如戴维所打的比方一样:当知识变得网络化之后,房间里最聪明的那位,已经不是站在屋子前头给我们上课的那位,也不是房间里所有人的群体智慧。房间里最聪明的人,是房间本身:是容纳了其中所有的人与思想,并把他们与外界相联连的这个网。换句话说,互联网作为知识的基础设施,本身并不拥有创造知识的实体要件,知识不存在于书籍之中,也不存在于头脑之中,而是存在于网络本身。
以下事实正越来越清晰:传统的图书在表达观点的方式和呈现形态上,是将思想挤压到一条狭长的小径上,驱使读者沿着这条小径行进。网络化时代,从最为纯正的网络意义上,它的开放姿态,决定每个人都遭遇了网络所带来的心理颠覆——丰富性、链接、无需许可、公共性、未决性,但网络化的知识和科学,会让我们更加接近关于知识和科学的真理。但就在这浩若烟海之中,我们一样要找到知识的停止点,在心里给它个飞吻。
网络,如尼古拉斯·卡尔说的那样,重装了我们的大脑。在信息洪流之中,众生得以不必焦虑,并能轻松自在地在网络之上“笑傲江湖”的方式,或许是找到那一个个知识的停止点。从这个意义上,我们要再回看一下本文开始时戴维·温伯格转述的故事,大笑三声,一起释怀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01