京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代知识的停止点_数据分析师考试
毫无疑问,信息超载作为一种生活方式,已经挟裹着众生的生活。戴维·温伯格《知识的边界》所尝试的,恰是在大数据时代,如何认知网络下的知识与科学。因为,不管确定“互联网+”,还是定义“互联网-”,都要面对今日“事实不再是事实”,而“专家随处可见”的现实。
显然需要理清思路,理性面对这一切。你要学会像戴维一样,冷静地打着比方,包括以转述的方式,向自己的见解缓步、轻松而去——
美国出版公司兰登书屋的创始人之一贝内特·瑟夫出版的一本书里就讲过这么个奇闻轶事:
一天,《哈波斯》杂志的卡斯·坎菲尔徳在编辑部接待一位长相甜美却个性坚决的妇女。这位女同胞很想讨论她自己正在创作的第一本小说。“一本小说应该是多长的篇幅?”她问道。
“这个问题没有确切的答案,”坎菲尔德解释道,“一些像《伊登·弗洛姆》这样的小说,大概只有4万字。而其他的小说,如《飘》,却可能达到30万字。”
“但,普通小说的平均长度大概是多少字?”妇女坚持问道。
“呃,我觉得大概是8万字吧。”坎菲尔德回答。
妇女跳了起来,并欢呼着。“感谢上帝!”她喊道。“我的小说完结了!”
戴维转述这则逸闻并不是让大家简单地笑上一笑。戴维想说的是,面对太多的信息而无法全部知道的事实,其实我们的战略一直是建立一个知识的停止点(stopping points)系统。这是个很有效的方法,很实用于保存和交流知识的纸质媒介。
戴维列举的另一伟大实例同样能说明问题。1836年,达尔文从“小猎犬号”航行归来,完成了将促进他进化论理论的观察。1838年,达尔文对自己的理论有了清晰的想法。1842年,他用铅笔写下了35页的“骨架”,但没有公开。1844年,他写了189页的手稿,没有公开,但指示妻子,如果他死了就将手稿出版。接下来的15年,他研究了藤壶,出版了8本书,生了9个孩子,并且经常和同事通信往来讨论。他还开始了实验科学。但他就是没有出版自己的进化论。他似乎在等着什么?有一天他收到了年轻的博物学家阿尔弗雷德·罗素·华莱士写来的一封信,此后华莱士又寄给了达尔文一份20页的文稿,里面提到的理论和达尔文的进化论基本相似。达尔文万分惊讶,他想成为这个理论的最早提出者,但不想欺骗华莱士,或者怕更为糟糕,让自己看起来是窃取了华莱士的观点。在听取两位亲密同事意见后,1858年7月,伦敦林奈学会安排宣读了华莱士的一篇文章,以及达尔文的两篇文章。林奈学会在自己的杂志上刊发这些文稿后,达尔文才开始在科学家圈内引起关注。这个鼓舞,让达尔文经过13个月的写作,完成了不朽的《物种起源》。达尔文和华莱士的故事,后世有多种解读。纸质出版模式静静地塑造了科学,这是一个例子。同时,那个停止点,格外清晰。
传统的知识是纸的意外产物。没有什么时候,我们对纸的认识这么明确过。纸上的知识,纸上的科学,曾经是一种出版的类型,它们经过层层过滤,才能在纸上“行走江湖”。但今天,纸质悄然换作网络。在此背景下,如有达尔文和华莱士的故事上演,恐怕要重新演绎,且绝不会如此安安静静,按部就班,起承转合。
能够明确的是,权威在网络化时代仍然会是一个停止点,但“权威已经不再是一个主要由有资质的人所构成、专门生产特级产品的特殊阶层了”。相反,权威更多地是由功能性来定义,如你的体验一般:权威是你在无数连接中访问的那个最后一个页面——是你决定不再继续去点击其他链接的那个页面。
正如戴维所打的比方一样:当知识变得网络化之后,房间里最聪明的那位,已经不是站在屋子前头给我们上课的那位,也不是房间里所有人的群体智慧。房间里最聪明的人,是房间本身:是容纳了其中所有的人与思想,并把他们与外界相联连的这个网。换句话说,互联网作为知识的基础设施,本身并不拥有创造知识的实体要件,知识不存在于书籍之中,也不存在于头脑之中,而是存在于网络本身。
以下事实正越来越清晰:传统的图书在表达观点的方式和呈现形态上,是将思想挤压到一条狭长的小径上,驱使读者沿着这条小径行进。网络化时代,从最为纯正的网络意义上,它的开放姿态,决定每个人都遭遇了网络所带来的心理颠覆——丰富性、链接、无需许可、公共性、未决性,但网络化的知识和科学,会让我们更加接近关于知识和科学的真理。但就在这浩若烟海之中,我们一样要找到知识的停止点,在心里给它个飞吻。
网络,如尼古拉斯·卡尔说的那样,重装了我们的大脑。在信息洪流之中,众生得以不必焦虑,并能轻松自在地在网络之上“笑傲江湖”的方式,或许是找到那一个个知识的停止点。从这个意义上,我们要再回看一下本文开始时戴维·温伯格转述的故事,大笑三声,一起释怀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22