京公网安备 11010802034615号
经营许可证编号:京B2-20210330
应对大数据人才短缺的四种方式_数据分析师考试
在一份关于大数据增长趋势的调研报告中,IDC表示,较之其他的商业智能(BI)工具,可视化数据发现工具在市场上的增长要比前者快2.5倍;而基于云的大数据和分析(BDA)解决方案的开销增速将是其他类型的企业内部部署解决方案的三倍。
然而,在未来几年大数据领域仍将继续面临人才的严重缺乏尴尬境地。IDC预测,到2018年,仅在美国就有181000个深度数据分析师的角色 空缺,而这一空缺将是与数据管理相关或解释需要相关技能职位空缺的五倍。然而,市场缺没有足够多合格的申请者来填补这些职位空缺。
Gartner表示,今年,大数据的需求将在全球范围内创造440万个就业机会,但却只有三分之一的岗位能够招到合适的人才。
这是因为大数据分析所需要的技能不仅仅是使用仪表板监控数据流。该领域的人才需要在数据科学方面具备高水平的技能来设置相应的搜索和参数,以设 计滤波算法(filtering algorithms)。这类人才需要硕士学位甚至博士学位,没有相关的技能,无法获得相应的行业资质认证。
根据Burtch在2013年的调查发现,近九成的大数据专业人员具有诸如统计学,应用数学,运筹学或经济学等相关学科硕士以上学历。
而根据来自麦肯锡全球研究所的另一项调查显示,预计到2018年,美国将面临大约150万大数据专家的短缺。
那么,如果你企业无法招聘到具备相关高学历背景的大数据专家的话,您企业要如何应对呢?本文接下来的部分,我将为您介绍四种可供选择的方法,以帮助您企业发现、发展和留住相关的大数据人才。
1、从真正熟悉您企业业务的人开始着手
“我非常认可大数据技能非常紧缺这一评估,”Gartner信息管理研究室主任Nick Heudecker表示。“许多企业客户甚至不知道他们需要从什么技能开始着手,更不用说如何才能这些技术。他们对于自己企业将面临怎样的问题,以及亟待 解决的分析技能是无意识的。”
企业往往认为他们需要一个具有先进的数据科学或数学博士学位的专业人士,但Heudecker表示,一个替代的方法是找一个真正熟悉您企业的业务的人员,并教给这些人员相关的分析能力。
从理解您企业的业务开始要比从对于机器学习的理解开始来得更为重要。企业可以教给员工进行数据处理和统计,或找到具备编程背景学位的人。企业可以通过对这些人实施更多培训,并让这些人员加入到您企业的大数据和先进的分析团队,他说。
2、培养您企业自己的超级巨星
领先的大数据软件提供商Tamr公司的现场工程技术负责人Min Xiao说,在过去的五年里,他已经面试过大约500人,并实际招募了约40至50人,他同意找到合适的大数据分析人才是很难的,但他也有自己寻找人才的方法。
“我的诀窍是找到那些当前还不是超级巨星,但要具备潜在的成长为超级巨星潜力的人才。我尝试聘请过很多从未从事过数据科学家相关工作的年轻人, 但我可以看到他们有这方面的潜力;或是那些目前尚只有中级或中高级水平的潜力,目前也没有做过数据科学相关工作,但具备成长成为该领域实力巨匠潜力的人 才。”他说。
他所看重的潜力主要是教育,包括学历和学校。他所考察的人才主要来自统计学,计算机科学等相关专业,有时包括物理专业。当然物理专业的人才可能不会是数据分析工作岗位的首选学位,但Xiao说他跟那些人合作得都很好。
“首先,如果他们有物理学位,说明他们很聪明。他们接受过数学课程的训练,而现代物理课程还需要他们做大量的编程。所以他们即使可能没有接受过正式的计算机科学的训练,但却已经具备了数据科学家角色所需的计算机技能,他们中的许多人甚至在这方面很擅长。”他说。
他着重考察的另一方面是应聘人才的毕业院校是否强调数学和科学,诸如像麻省理工学院,卡耐基梅隆大学,斯坦福大学,布朗和约翰·霍普金斯大学。”一些院校的毕业门槛非常高,所以从这些院校毕业的人工作努力程度很高,工作的态度很好。”Xiao说。责任编辑:qxcpw24895.com
3、寻找Excel专家
The Hershey Company人才分析部门经理Jason Chavarry在另一个不寻常的领域找到了大数据人才:微软Excel用户。
“Excel可以说是一份沃土,很多人从中获得有大数据的能力,他们往往被人们请教,以帮助其他的工作,”他说。
他补充说,Excel是一个入门级的管道里的人学习,是在大数据的分析,发现其基本的功能。”每个人都是用大量的基本功能。你如何制定出一个报 告或电子表格,你创造什么样的规则。Excel穿过所有的人。你可以使用它的基础水平的统计,基本的数据分析和可视化,”他补充道。
他补充说,Excel是学习大数据分析基本功能的一款入门级的学习管道。“我们每个人一般都只是大量了其一些基本功能。例如制做出一份报告或电子表格。但其实我们可以通过其创造一些相应的规则。通过利用其基础的统计功能,实现一些基本的数据分析和可视化。”他补充道。
但Chavarry指出,针对不同规模的项目也需要不同的工具。对于有5000行数据的分析项目,采用诸如SAS或R这样的工具无疑将是矫枉过 正,但若采用Excel的将是非常完美的。而若是有20万行的数据,Excel的功能就明显不够强大了。这时,你就需要大数据软件和编程知识,但并不拘泥 于一种特定语言。
“你真的不需要特定拘泥于关心采用哪种语言。如果有员工能够用一种语言来实现,那么其必然有能力以别的语言来实现。因此,你企业寻找的是具备学习能力的人才。” Chavarry说。
4、自行培养人才
鉴于大数据人才的稀缺,大多数企业的解决方案将是采用自行培养人才的方式。据大数据软件集成公司Talend的CMO Ashley Stirrup称,该公司通过建立一个导师计划,让有经验的专家来培训年轻人才,取得了良好的结果。
“有一类人能够作为嫁接其业务部门和新兴技术之间的桥梁。”Stirrup说。“通常,企业业务部门的人员还没有意识到的新技术对于业务进展的潜力,而对于一些高科技,他们也不知道如何使用。”
不幸的是,留住人才是相当困难的。Talend公司的客户说,他们培训了一些人,让他们接受新技术,然后这个人很可能会被其他公司以50%或更高的涨薪诱惑挖走,所以他们很难找到合适的人才,也更难找针对这些人才实施培训之后,将它们留住。
那么,企业应该如何留住这些人才呢,签订短期性约束力的合同协议可能有损与员工的关系? “关键在于想让这些经过专业培训的人才展示出他们能够在您的企业充分使用并展示他们的技能,而且,他们留在您的公司会更具有价值潜力。此外,企业需要设置 一定的期望,而不要看合同,” Stirrup说。
Xiao也正遭遇同样的人才争夺的问题。他说,他所在的Tamr公司试图激发所雇佣人才的团队意识,并激励他们寻找在该公司的价值。“当他们找 到与自己有‘共同语言’的同事,员工通常会认可这便是自己在未来几年将要心甘情愿合作的团队。鉴于市场竞争是如此激烈,我们真诚的希望员工能够在外面公司 获得成功,否则我们将无法吸引到更好的人才。”他说。
Heudecker也认为公司应该鼓励人才,而不是束缚人才。“您企业可能并不需要一个博士团队。也许只需要一个拥有统计学、计算机科学和工商 管理硕士学位的人。考察一下那些可能只有本科学历的员工,看看他们是否对于数据分析方面感兴趣。公司应该提供激励性的基础训练和方法来确保将员工留在企 业,因为这些技能在现如今的需求都是如此迫切。”他说。
Heudecker说,最终,大数据将成为新的常态,而人才储备也将扩大。 “如果我们看一下大数据的基础架构,它非常类似于80年代的RDBMS市场。彼时,其还没有被广泛应用,但人们已经在部署建造它们。而同样的事情将在大数据领域发生。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27