
美媒解读大数据:赚钱机会多亏钱风险大_数据分析师考试
谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。
7月31日电(刘世东)大数据是当下最受关注的流行词之一,有时甚至到了被滥用的地步。然而,谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。美国《连线》杂志网站日前刊文对这一问题进行了探讨,指出无论是投行还是传统制造业都可以通过大数据赚钱,但在运营大数据项目时无疑也面临着诸多风险。
公司如何通过大数据赚钱
大数据这一新兴的技术可以被用来更精准的剖析股票市场和供应链等复杂系统。投行成为最早一批应用大数据分析的行业之一,这一点都不令人意外。毕竟,那些以赚钱为业务的管理者通常更乐于利用技术去节省和创造财富。
在投行的日常业务中,为了对投资机会或股票购买进行精准的推荐,有新闻简报,财务报表等大量文档需要处理。如果人工进行处理,工作量过于庞大。因此投行分析师们往往会简化他们的分析模型的假设前提,并使用电子表格来完成绝大部分工作。大数据技术可以处理巨量信息,这可以使投行减少(因简化分析)所面临的风险,并做出更佳的分析和预测。
通过大数据平台,股票经纪人和投资经理们可以处理巨量非系统性的信息,以确定哪些公司最值得投资。非系统性公共信息,如公司新闻,产品评论,供应商数据,价目单变化,可以整合为“大数据”统一来处理,建立起数学模型,帮助经纪人决定买入或售出哪些股票。
有些利用大数据进行投资预测的企业,往往通过云平台来削减先期成本,先从少量的服务器开始,在获益后,逐步提高投入。例如,一位数量分析师从一家大型投行辞职后,在不到半年的时间内,使用非常有限的投入,便创立了一个已实现盈利的大数据交易系统。
即便在传统制造业领域,大数据也可以提升预测能力。欧洲某大型汽车制造商,建立了一个分析钢材交易成本的内部系统,并借此确定最佳时机,以更优价格买入原材料。这个系统是基于开源Java架构Hadoop创建的,整合了多个供应商的共计15Tb(Terabyte,万亿字节或太字节)的数据,在两年内为该公司节省了1600万美元。
这一项目之所以能成功主要有两个原因:公司有足够的信息为所有供应商建模;该项目节省的成本超过了实施这个项目的费用。
公司为何因为大数据亏钱
然而,并不是所有大数据项目都会这样成功。有时公司在大数据项目上也会亏钱,失败概率和成功的概率相差无几。大数据项目失败的早期征兆各不相同,最常见的问题有:
起步太高:大数据并不需要一笔巨大的预算,如果你怀着巨大的投入将带来巨大回报的预期开启一个大数据项目,那往往会产生问题。在开启项目前,明智的做法是,在小范围内测试对(大数据)技术有限的投入是否真能带来预期的收益。如果测试的结果是肯定的,一个项目随后总是可以扩大规模,并达到可以带来更大收益的规模经济。
低估人力投入:在开始实施一个大数据系统前,问自己一个简单的问题:这个项目在没有持续的人力支持的情况下是否可以运作?如果答案是“不可以”,那么停止该项目。创建一个无法在有利润的情况下维持的项目,往往意味着数百万的损失。
试图突破自然语言处理的限制:大数据有个经常被赞扬的功能是,利用“自然语言处理”(NLP),将众多领域的大量数据处理成可读性强的叙述性文字。这一想法确实很令人兴奋,但对于那些想要对此进行尝试的公司来说,实际情况往往不如人意。“自然语言处理”如今仍存在许多重大限制,这主要是因为人工智能还不够先进--而且在10年内,这一情况可能不会改变。
现代大数据具备节约成本的巨大潜力,在过去,这种有如魔法般的潜力会令数据处理者感到惊奇。但是,在投入时间和资源到大数据项目之前,首先要确认你的项目是有钱可赚的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04