
美媒解读大数据:赚钱机会多亏钱风险大_数据分析师考试
谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。
7月31日电(刘世东)大数据是当下最受关注的流行词之一,有时甚至到了被滥用的地步。然而,谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。美国《连线》杂志网站日前刊文对这一问题进行了探讨,指出无论是投行还是传统制造业都可以通过大数据赚钱,但在运营大数据项目时无疑也面临着诸多风险。
公司如何通过大数据赚钱
大数据这一新兴的技术可以被用来更精准的剖析股票市场和供应链等复杂系统。投行成为最早一批应用大数据分析的行业之一,这一点都不令人意外。毕竟,那些以赚钱为业务的管理者通常更乐于利用技术去节省和创造财富。
在投行的日常业务中,为了对投资机会或股票购买进行精准的推荐,有新闻简报,财务报表等大量文档需要处理。如果人工进行处理,工作量过于庞大。因此投行分析师们往往会简化他们的分析模型的假设前提,并使用电子表格来完成绝大部分工作。大数据技术可以处理巨量信息,这可以使投行减少(因简化分析)所面临的风险,并做出更佳的分析和预测。
通过大数据平台,股票经纪人和投资经理们可以处理巨量非系统性的信息,以确定哪些公司最值得投资。非系统性公共信息,如公司新闻,产品评论,供应商数据,价目单变化,可以整合为“大数据”统一来处理,建立起数学模型,帮助经纪人决定买入或售出哪些股票。
有些利用大数据进行投资预测的企业,往往通过云平台来削减先期成本,先从少量的服务器开始,在获益后,逐步提高投入。例如,一位数量分析师从一家大型投行辞职后,在不到半年的时间内,使用非常有限的投入,便创立了一个已实现盈利的大数据交易系统。
即便在传统制造业领域,大数据也可以提升预测能力。欧洲某大型汽车制造商,建立了一个分析钢材交易成本的内部系统,并借此确定最佳时机,以更优价格买入原材料。这个系统是基于开源Java架构Hadoop创建的,整合了多个供应商的共计15Tb(Terabyte,万亿字节或太字节)的数据,在两年内为该公司节省了1600万美元。
这一项目之所以能成功主要有两个原因:公司有足够的信息为所有供应商建模;该项目节省的成本超过了实施这个项目的费用。
公司为何因为大数据亏钱
然而,并不是所有大数据项目都会这样成功。有时公司在大数据项目上也会亏钱,失败概率和成功的概率相差无几。大数据项目失败的早期征兆各不相同,最常见的问题有:
起步太高:大数据并不需要一笔巨大的预算,如果你怀着巨大的投入将带来巨大回报的预期开启一个大数据项目,那往往会产生问题。在开启项目前,明智的做法是,在小范围内测试对(大数据)技术有限的投入是否真能带来预期的收益。如果测试的结果是肯定的,一个项目随后总是可以扩大规模,并达到可以带来更大收益的规模经济。
低估人力投入:在开始实施一个大数据系统前,问自己一个简单的问题:这个项目在没有持续的人力支持的情况下是否可以运作?如果答案是“不可以”,那么停止该项目。创建一个无法在有利润的情况下维持的项目,往往意味着数百万的损失。
试图突破自然语言处理的限制:大数据有个经常被赞扬的功能是,利用“自然语言处理”(NLP),将众多领域的大量数据处理成可读性强的叙述性文字。这一想法确实很令人兴奋,但对于那些想要对此进行尝试的公司来说,实际情况往往不如人意。“自然语言处理”如今仍存在许多重大限制,这主要是因为人工智能还不够先进--而且在10年内,这一情况可能不会改变。
现代大数据具备节约成本的巨大潜力,在过去,这种有如魔法般的潜力会令数据处理者感到惊奇。但是,在投入时间和资源到大数据项目之前,首先要确认你的项目是有钱可赚的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29