京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美媒解读大数据:赚钱机会多亏钱风险大_数据分析师考试
谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。
7月31日电(刘世东)大数据是当下最受关注的流行词之一,有时甚至到了被滥用的地步。然而,谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。美国《连线》杂志网站日前刊文对这一问题进行了探讨,指出无论是投行还是传统制造业都可以通过大数据赚钱,但在运营大数据项目时无疑也面临着诸多风险。
公司如何通过大数据赚钱
大数据这一新兴的技术可以被用来更精准的剖析股票市场和供应链等复杂系统。投行成为最早一批应用大数据分析的行业之一,这一点都不令人意外。毕竟,那些以赚钱为业务的管理者通常更乐于利用技术去节省和创造财富。
在投行的日常业务中,为了对投资机会或股票购买进行精准的推荐,有新闻简报,财务报表等大量文档需要处理。如果人工进行处理,工作量过于庞大。因此投行分析师们往往会简化他们的分析模型的假设前提,并使用电子表格来完成绝大部分工作。大数据技术可以处理巨量信息,这可以使投行减少(因简化分析)所面临的风险,并做出更佳的分析和预测。
通过大数据平台,股票经纪人和投资经理们可以处理巨量非系统性的信息,以确定哪些公司最值得投资。非系统性公共信息,如公司新闻,产品评论,供应商数据,价目单变化,可以整合为“大数据”统一来处理,建立起数学模型,帮助经纪人决定买入或售出哪些股票。
有些利用大数据进行投资预测的企业,往往通过云平台来削减先期成本,先从少量的服务器开始,在获益后,逐步提高投入。例如,一位数量分析师从一家大型投行辞职后,在不到半年的时间内,使用非常有限的投入,便创立了一个已实现盈利的大数据交易系统。
即便在传统制造业领域,大数据也可以提升预测能力。欧洲某大型汽车制造商,建立了一个分析钢材交易成本的内部系统,并借此确定最佳时机,以更优价格买入原材料。这个系统是基于开源Java架构Hadoop创建的,整合了多个供应商的共计15Tb(Terabyte,万亿字节或太字节)的数据,在两年内为该公司节省了1600万美元。
这一项目之所以能成功主要有两个原因:公司有足够的信息为所有供应商建模;该项目节省的成本超过了实施这个项目的费用。
公司为何因为大数据亏钱
然而,并不是所有大数据项目都会这样成功。有时公司在大数据项目上也会亏钱,失败概率和成功的概率相差无几。大数据项目失败的早期征兆各不相同,最常见的问题有:
起步太高:大数据并不需要一笔巨大的预算,如果你怀着巨大的投入将带来巨大回报的预期开启一个大数据项目,那往往会产生问题。在开启项目前,明智的做法是,在小范围内测试对(大数据)技术有限的投入是否真能带来预期的收益。如果测试的结果是肯定的,一个项目随后总是可以扩大规模,并达到可以带来更大收益的规模经济。
低估人力投入:在开始实施一个大数据系统前,问自己一个简单的问题:这个项目在没有持续的人力支持的情况下是否可以运作?如果答案是“不可以”,那么停止该项目。创建一个无法在有利润的情况下维持的项目,往往意味着数百万的损失。
试图突破自然语言处理的限制:大数据有个经常被赞扬的功能是,利用“自然语言处理”(NLP),将众多领域的大量数据处理成可读性强的叙述性文字。这一想法确实很令人兴奋,但对于那些想要对此进行尝试的公司来说,实际情况往往不如人意。“自然语言处理”如今仍存在许多重大限制,这主要是因为人工智能还不够先进--而且在10年内,这一情况可能不会改变。
现代大数据具备节约成本的巨大潜力,在过去,这种有如魔法般的潜力会令数据处理者感到惊奇。但是,在投入时间和资源到大数据项目之前,首先要确认你的项目是有钱可赚的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21