京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何创建用户模型:问卷调查与数据分析(2)_数据分析师考试
二、数据处理 数据的常规处理
对于刚才得到的数据,可以进行常规的处理。即求出平均值或者份额进行相应比较分析,所得到的结果如下。
对于样本量为10的上述调查结果经计算,细心护理型占50%,粗放型30%,异常数据20%。
变量性问题平均值:
对于各个角色均值数据如下:
从上述数据结论可知,对呀B1-B4问题,两个用户角色观点相差不大。但是对于B5(产品交互)问题粗放型用户比细心护理型用户更为重视。
经过对建议性问题分析结果可以得到如下图表:
由此可得出结论,细心护理型用户对email的要去较为强烈;粗放型的用户倾向与写信的方式。对于添加的服务项,这两种角色均有需求。
综上所述,我们只是举了一个非常非常2b又简单的例子来说明构建用户模型的方法,实验的样本量也很小。这个简单的例子可以说明基本方法,要真正应用到自己的case中,还需要认真研究分析。
多元回归方法分析用户模型
对于数学好的童鞋,可以给出一种多元回归统计的方法来分析我们得到的数据。这里写的并不详细,也没听提供假设检验,望高手多多指点交流。我们仅用多元回归方法来分析变量性问题的结果。
我们的例子提出了5个变量性问题,所以要回归的线性方程具有5个变量,形式如下:
Y=b0+b1x1+b2x2+b3x3+b4x4+b5x5
我们的目的就是要对b0、b1、b2…b5计算出估计量。
写成矩阵的形式为Y=BX
其中Y为综合满意度数据
使用MATLAB中的regress(y,x)可以对B进行多元回归,结果如下:
(这里没有进行假设检验等,大家可以自行完善)
>> y=load('C:\Users\ydbj0017\Desktop\y.txt')
y =
90
85
77
81
70
78
89
91
90
80
>> x=load('C:\Users\ydbj0017\Desktop\x.txt')
x =
1 80 95 79 78 67
1 87 66 60 89 78
1 97 77 87 69 90
1 88 98 65 75 68
1 78 83 63 73 76
1 73 75 88 80 95
1 78 98 63 66 97
1 77 74 87 66 69
1 90 88 67 87 78
1 88 78 67 79 60
>> regress(y,x)
ans = %这个就是估计矩阵B
51.4213 %b0
-0.0868 %b1
0.2210 %b2
0.1407 %b3
0.2041 %b4
-0.0671 %b5
b0为常数,对变量没有影响,剩余对应相应的变量问题。由此可见B2问题是全部用户对整体评价中权重最大的因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16