
大数据精准营销降低电商APP新客成本_数据分析师考试
截至2015年6月,中国网民规模达6.68亿,互联网普及率为48.8%;手机网民规模达5.94亿,占比提升至88.9%。也就是说移动互联网时代已经全面到来。在移动互联网时代,决定公司成败的关键技术从信息技术(Information Technology)转向了数据处理技术(Data Technology),“人类正从IT时代走向DT时代”。
DT时代,大数据带来的增量与变量是企业关注的核心。在广义的电商领域,新客的获取成本就是决定增量和变量的一个重要指标。为方便探讨,比达咨询(BigData-Research)对电商APP新客的定义是:激活APP后一月内有购买行为的用户。
众所周知,电商主要的销售额来自老客,但是新客的增长是满足基数规模扩张、迅速拉升市场占有率的关键指标。目前大家熟知的电商平台,都是起于PC网络时期的,且都在做向移动互联网转型的战略布局,所以规模拓展依然是第一要务,也就是要不断地汲取新客,其中包括将PC老客转化为APP新客的过程。
PC互联网早期,新客的转化主要依赖传统的品牌广告,公交车、地铁、报纸上都充斥着各个互联网公司的广告。随着互联网规模的扩大、搜索技术的发展,新客的转化模式变成了品牌广告+精准投放,这个精准投放的精准度也经过了投在网站、投在网页、投在关键词的变迁。
进入移动互联网时代之后,开拓APP新客的模式在品牌广告+精准投放的基础上,新增加了精准营销----基于DT时代大数据分析的精准营销。这里的精准包括两个含义,一个是更精准地定位到潜在用户,另一个是将每一个新客的成本进一步精准化。
从2013年以来,新客成本在不断拉升。2013年前,据行业数据统计,获取一个新用户的成本是维护老用户成本的5~6倍。当时的情况是:大电商不赚钱因为流量越来越贵,小电商赚不到钱是因为没有流量;并且新客获取成本越来越高,新客转化难,用户活跃度偏低。 2014年,获取新客成本已经是维护老用户成本的6-8倍。到了2015年,由于有了大数据精准营销,新客成本有了一些变化。
(图:各类电商APP新客成本调研数据)
根据上图可以看出,APP新客成本的类别区分越来越细化,新客成本的价格不再是平均价,而是一个价格区间。这是因为各家针对新客的投放是立体的,即:品牌广告+精准投放+精准营销。图中标出的价格区间包含了不同平台的投放价格,高的数值来自传统广告模式,低的数值来自大数据精准运营。因此,只做广告投放的企业其新客成本就会比较高,附带的好处是品牌知名度会有所提升。大多数企业会将几种手段结合起来运作,比如会提前为营销节打广告,然后为营销节活动页面买流量,在营销节期间发红包促销以老带新或以甲业务带动乙业务。
对于图中价格跨度最大的票务旅游类APP来说,原因有以下两点:1、进入数据统计的票务旅游类网站不多;2、有长期依赖电视广告的企业。这也间接说明了这个领域竞争的激烈程度。另有第三方数据证明了在线旅游在2015年上半年的高速增长。根据最新的CNNIC报告,截至2015年6月底,手机预订机票、酒店、火车票或旅游度假产品的网民规模达到1.68亿,较2014年12月底增长3350万人,半年度增长率为25.0%。这是别的行业所没有的。
DT时代的精准营销,目前正处于高速成长时期,手段多样。企业在不断尝试,消费者也在逐步适应。比如消费者会投诉为啥老用户得到的促销红包就比新用户少;比如对于买了机票就给你专车接机券,有的用户觉得方便、有的用户就觉得是骚扰。以前,客户终身价值=顾客终身购买次数×客单价×利润率。今后,客户的社会关系、客户消费点评、带来的新客量等等指标,也会包含在客户终身价值里面。DT时代的精准营销,首要就是精算,企业要清楚在拉升新客的同时带来了多少营业额的转化,清楚钱都花在了哪里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07