
大数据如何走出“围墙”_数据分析师考试
大数据浪潮的扑面而来,使得对数据的认识和利用被提升到前所未有的高度。特别是对于占据九成份额,拥有最多大数据资源的政府部门,堪称“富矿”。
“政府手里最值钱是土地和数据,数据是可以反复利用的,政府数据一旦释放,所产生的价值要比土地高太多。”谈及政府数据的价值,贵阳大数据交易所总裁王叁寿告诉《中国电子报》记者说。
更重要的是,大数据时代,国家大力发展政务大数据,还在于其能够成为打通部门壁垒、提高行政效率、转变思维方式,是开启“智慧政府”之门的一把金钥匙。
然而就目前而言,政府数据仍然被束之高阁,无论是促进价值释放还是促进政府职能转型而言,都是全新课题。那么,躲在里面“睡觉”的政府大数据如何才能走出“围墙”呢?
政府自身意识很关键
一位市民出国旅游需要证明“我妈是我妈”,这让李克强总理在国务院常务会议上拍了桌子,反映出某些政府管理部门和企业在建设诚信体系方面理念落后和动作迟缓,而如果实现了大数据联网,完全可以由政府部门内部调取,不必让市民急断肠、跑断腿。
部分政府部门在对大数据开放上所持的消极态度在一定程度上阻碍了政府大数据价值的释放。在赛迪智库软件与信息服务业研究所所长安晖看来,大数据走出政府“围墙”的核心问题在于政府自身的意识。
“国外认为政府使用纳税人的钱获得的数据,就应该为纳税人所用,所以主导观念就是开放。而政府部门对于数据的态度是,除非需要,否则不开放。”安晖这样告诉《中国电子报》记者。
随着国家在部署运用大数据优化政府服务和监管、提高行政效能上的不断加强,地方政府对于开放数据的态度正在逐渐转变,步伐也在不断加快,越来越多的政府部门意识到“数据是一种财富”,北京、上海等全国多个地方政府均在一定程度上开放了政府数据。
王叁寿告诉《中国电子报》记者,地方政府的确在对于大数据开放态度上有积极转变,但他也同时指出,光有态度并不够。
因为这样的开放姿态可能掺有“水分”。一种情况是将政府部门数据交给自建的数据中心,实际上并没有做到完全地面向市场主体开放。另一种情况是开放数据的价值很少,低价值密度的数据无法被市场主体有效利用。
中关村大数据产业联盟秘书长赵国栋在接受《中国电子报》记者采访时表示,对于数据资产的重视所产生的一个副作用则是政府部门将数据据为己有,这涉及到政府部门的利益问题。政府部门只有改变观念,转变职能,才能打破这种垄断,真正做到数据开放并服务于市场主体。
大数据处理需要“富士康”
政府部门对于开放大数据上的“保守”有其现实原因,主要来自对于开放数据安全性的担忧。即便能够做到单一部门开放数据的安全级别分类和审核,但很难控制不同部门数据开放之后的交叉泄密,这成为政府部门对于开放大数据的顾忌所在。
赵国栋并不认同因为安全问题而拒绝大数据开放的做法,他认为大数据安全是个伪命题。“从宏观层面,国家有能力保护好数据安全。而对于政府部门,安全体现在使用中去维护,不能因为有风险而不去做,不能因噎废食。”赵国栋直言。
在王叁寿看来,政府开放大数据还是要在安全保障的前提下求发展,确保数据源的真实、可信是最为重要的。大数据的清洗和建模两个环节成为大数据走出政府围墙的关键,这又涉及对于数据的采集、汇总、脱敏、分析等多个流程,而目前国内在清洗、建模方面的人才较少。
“大数据的清洗、建模、分析属于劳动密集型工作,不管是中国也好,国外也好,在大数据清洗、建模、分析领域需要‘富士康式’的企业,进行数据清洗业务的标准化生产,为大量的数据交易提供支撑。”
我国正在积极推动加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准方面的工作。在近日国务院办公厅印发的《关于运用大数据加强对市场主体服务和监管的若干意见》中,明确工信部、国家标准委员会、国家发改委、质检总局、网信办、统计局等多部门建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等工作,计划将于2020年前出台并实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15