京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何走出“围墙”_数据分析师考试
大数据浪潮的扑面而来,使得对数据的认识和利用被提升到前所未有的高度。特别是对于占据九成份额,拥有最多大数据资源的政府部门,堪称“富矿”。
“政府手里最值钱是土地和数据,数据是可以反复利用的,政府数据一旦释放,所产生的价值要比土地高太多。”谈及政府数据的价值,贵阳大数据交易所总裁王叁寿告诉《中国电子报》记者说。
更重要的是,大数据时代,国家大力发展政务大数据,还在于其能够成为打通部门壁垒、提高行政效率、转变思维方式,是开启“智慧政府”之门的一把金钥匙。
然而就目前而言,政府数据仍然被束之高阁,无论是促进价值释放还是促进政府职能转型而言,都是全新课题。那么,躲在里面“睡觉”的政府大数据如何才能走出“围墙”呢?
政府自身意识很关键
一位市民出国旅游需要证明“我妈是我妈”,这让李克强总理在国务院常务会议上拍了桌子,反映出某些政府管理部门和企业在建设诚信体系方面理念落后和动作迟缓,而如果实现了大数据联网,完全可以由政府部门内部调取,不必让市民急断肠、跑断腿。
部分政府部门在对大数据开放上所持的消极态度在一定程度上阻碍了政府大数据价值的释放。在赛迪智库软件与信息服务业研究所所长安晖看来,大数据走出政府“围墙”的核心问题在于政府自身的意识。
“国外认为政府使用纳税人的钱获得的数据,就应该为纳税人所用,所以主导观念就是开放。而政府部门对于数据的态度是,除非需要,否则不开放。”安晖这样告诉《中国电子报》记者。
随着国家在部署运用大数据优化政府服务和监管、提高行政效能上的不断加强,地方政府对于开放数据的态度正在逐渐转变,步伐也在不断加快,越来越多的政府部门意识到“数据是一种财富”,北京、上海等全国多个地方政府均在一定程度上开放了政府数据。
王叁寿告诉《中国电子报》记者,地方政府的确在对于大数据开放态度上有积极转变,但他也同时指出,光有态度并不够。
因为这样的开放姿态可能掺有“水分”。一种情况是将政府部门数据交给自建的数据中心,实际上并没有做到完全地面向市场主体开放。另一种情况是开放数据的价值很少,低价值密度的数据无法被市场主体有效利用。
中关村大数据产业联盟秘书长赵国栋在接受《中国电子报》记者采访时表示,对于数据资产的重视所产生的一个副作用则是政府部门将数据据为己有,这涉及到政府部门的利益问题。政府部门只有改变观念,转变职能,才能打破这种垄断,真正做到数据开放并服务于市场主体。
大数据处理需要“富士康”
政府部门对于开放大数据上的“保守”有其现实原因,主要来自对于开放数据安全性的担忧。即便能够做到单一部门开放数据的安全级别分类和审核,但很难控制不同部门数据开放之后的交叉泄密,这成为政府部门对于开放大数据的顾忌所在。
赵国栋并不认同因为安全问题而拒绝大数据开放的做法,他认为大数据安全是个伪命题。“从宏观层面,国家有能力保护好数据安全。而对于政府部门,安全体现在使用中去维护,不能因为有风险而不去做,不能因噎废食。”赵国栋直言。
在王叁寿看来,政府开放大数据还是要在安全保障的前提下求发展,确保数据源的真实、可信是最为重要的。大数据的清洗和建模两个环节成为大数据走出政府围墙的关键,这又涉及对于数据的采集、汇总、脱敏、分析等多个流程,而目前国内在清洗、建模方面的人才较少。
“大数据的清洗、建模、分析属于劳动密集型工作,不管是中国也好,国外也好,在大数据清洗、建模、分析领域需要‘富士康式’的企业,进行数据清洗业务的标准化生产,为大量的数据交易提供支撑。”
我国正在积极推动加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准方面的工作。在近日国务院办公厅印发的《关于运用大数据加强对市场主体服务和监管的若干意见》中,明确工信部、国家标准委员会、国家发改委、质检总局、网信办、统计局等多部门建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等工作,计划将于2020年前出台并实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27