京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们用“大数据”做空_数据分析师考试
不是标题党,确有其事,不过不是我们做空,是我们帮助客户做空,那还是我在律师事务所做专职律师时候的事。
大家如果对反垄断法有一定的了解的话,就知道如果两个(或以上)企业之间发生集中(比如兼并收购),且参与集中的企业达到一定的规模(比如营业额达到一定的标准),那么这个集中就必需先申报(比如在中国向商务部进行申报),待申报被批准后方能实施集中。反垄断申报的目的在于防止一个集中会破坏一个相关市场的竞争秩序,从而损害消费者的利益。举个例子,如果可口可乐和百事可乐集中合并为一个企业,那么这个集中就极有可能导致可乐市场的竞争秩序被扭曲和破坏——可乐市场的竞争因为两个主要竞争者的消逝而消逝了,那么可乐的价格就极有可能飙升,从而损害消费者的利益。
如果可口可乐和百事可乐要集中合并的话,那么这个集中合并一定得去相关市场的政府部门申报,与此同时就会有很多券商、对冲基金或者其他人来决定是否做多还是做空这两个公司的股票。如果这个集中被批准的可能性较大,那么做多这两个公司股票的基本面就大——虽然集中可能损害消费者利益,但对两个公司而言是利好,这两个公司的股价就会上涨,因此做多的赢面大。反言之,如果这个集中被拒绝的可能性较大,那么做空这两个公司股票的基本面就大——因为集中申报一旦被拒绝,那么参与集中的公司的股票就会下跌,因此做空的赢面大。当然我用这两个可乐巨头来举例可能太过典型而不具实际意义,因为它们的集中被否几乎就是板上钉钉的事。那我们就用一个实战例子来说事。不过这个例子还是与可口可乐有关。
2008年9月3日,可口可乐宣布计划以现金收购中国汇源果汁集团有限公司(01886.HK)。可口可乐公司建议收购要约为每股12.20港元,并等价收购已发行的可换股债券及期权。可口可乐在宣布之前已取得汇源三个股东签署的接受要约不可撤销承诺,三个股东共拥有汇源66%股份。如此项建议交易获得接纳, 可口可乐付出的对价约24亿美元。该交易若完成,将成为可口可乐到当时为止在中国金额最大的一笔收购交易,汇源果汁也将撤市。
上述消息宣布之后,汇源与可口可乐的股价均大幅上扬。但问题是可口可乐对汇源的收购属于中国反垄断法下应当予以申报的一次集中,该集中是否能得到商务部的批准成为这次交易的X因素,对此有对冲基金找到我们做分析,我们按照我们做此类业务的套路和方法收集了相关数据进行分析(至于是什么样的数据和什么样的分析方法我们在此就不说了)。不管怎样,我们最终的分析结果是商务部反垄断局将不会批准这次集中,幸运的是我们这次分析结果是正确的。相应地,听从我们的建议而做空的客户也就赚了钱。
7年前我们在做上述案例分析的时候,还没有所谓“大数据”或者“小数据”的概念。现在回过头来想想,我们当时(和现在)所做的无非也就是数据分析,当然了,所涉及的数据从总量上看也许不是那么地大,但是相对于具体项目而言已经足够大。当然,是不是一定可以把这些数据看成我们现而今所称的“大数据”也许值得商榷,我们以后另行撰文来讨论,这也是我在本文标题中把“大数据”加上引号的原因。不管怎样,考虑到商务部迄今为止在所有的 1000多件反垄断申报案件中只有2个未获申报,我们当时对概率如此之小的事件能够准确地预判还是令人值得骄傲的,这应当归功于我们收集数据的准确与分析的到位。
如果我们可以把上述成功做空看成是采用“大数据”所做的一个有效分析的话,那么“大数据”分析似乎具有以下几个特点,我们在这里就所谓的特点试图做一个归纳以达到抛砖引玉的目的:
- 大数据分析首先应当是商品。不管数据采集和分析的方法是怎样的,最后出来的产品应当有人化钱购买。没有商业价值的大数据或大数据分析产品是没有价值的,换言之是做不下去的。
-大数据分析产品的开发应当有针对性的客户。不同的客户对大数据分析产品的需求是不一样的。就拿法律行业的上述大数据为例,对大数据及大数据分析产品有直接需求的基本上是做涉外业务的律师事务所及国际大公司,所以上述大数据及大数据分析产品的工作语言基本上都是英语。
- 大数据分析的生命力在于它的准确性。以我们上述案件为例,可口可乐收购汇源被否,汇源股价在紧接着开盘的当天全天暴跌42%。而在这之前可口可乐天价收购汇源的消息曾刺激汇源股价狂飙近200倍。可口可乐在宣布收购汇源果汁之后,其在纽约证交所的股价曾一度出现强劲上升,但在后来的半年里股价下降了20%,这与其收购汇源失败不是没有关联的。可以想象如果我们当时的分析是不准确的,那么客户就得赔钱了。当然,我们这个案件的成功不能不说有一定的偶然性,那么大数据分析是不是有一定的容错?我相信是有的。如果大数据不会犯错,那其就等同于上帝了,但大数据的错误率太高,那么也就没有商业价值,甚至连娱乐价值也都没有了。
在文章最后问一个问题:用数据(不管是大还是小)分析出来的结论来做空算不算是恶意呢?也许这个问题有点“然并卵”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22