
我们用“大数据”做空_数据分析师考试
不是标题党,确有其事,不过不是我们做空,是我们帮助客户做空,那还是我在律师事务所做专职律师时候的事。
大家如果对反垄断法有一定的了解的话,就知道如果两个(或以上)企业之间发生集中(比如兼并收购),且参与集中的企业达到一定的规模(比如营业额达到一定的标准),那么这个集中就必需先申报(比如在中国向商务部进行申报),待申报被批准后方能实施集中。反垄断申报的目的在于防止一个集中会破坏一个相关市场的竞争秩序,从而损害消费者的利益。举个例子,如果可口可乐和百事可乐集中合并为一个企业,那么这个集中就极有可能导致可乐市场的竞争秩序被扭曲和破坏——可乐市场的竞争因为两个主要竞争者的消逝而消逝了,那么可乐的价格就极有可能飙升,从而损害消费者的利益。
如果可口可乐和百事可乐要集中合并的话,那么这个集中合并一定得去相关市场的政府部门申报,与此同时就会有很多券商、对冲基金或者其他人来决定是否做多还是做空这两个公司的股票。如果这个集中被批准的可能性较大,那么做多这两个公司股票的基本面就大——虽然集中可能损害消费者利益,但对两个公司而言是利好,这两个公司的股价就会上涨,因此做多的赢面大。反言之,如果这个集中被拒绝的可能性较大,那么做空这两个公司股票的基本面就大——因为集中申报一旦被拒绝,那么参与集中的公司的股票就会下跌,因此做空的赢面大。当然我用这两个可乐巨头来举例可能太过典型而不具实际意义,因为它们的集中被否几乎就是板上钉钉的事。那我们就用一个实战例子来说事。不过这个例子还是与可口可乐有关。
2008年9月3日,可口可乐宣布计划以现金收购中国汇源果汁集团有限公司(01886.HK)。可口可乐公司建议收购要约为每股12.20港元,并等价收购已发行的可换股债券及期权。可口可乐在宣布之前已取得汇源三个股东签署的接受要约不可撤销承诺,三个股东共拥有汇源66%股份。如此项建议交易获得接纳, 可口可乐付出的对价约24亿美元。该交易若完成,将成为可口可乐到当时为止在中国金额最大的一笔收购交易,汇源果汁也将撤市。
上述消息宣布之后,汇源与可口可乐的股价均大幅上扬。但问题是可口可乐对汇源的收购属于中国反垄断法下应当予以申报的一次集中,该集中是否能得到商务部的批准成为这次交易的X因素,对此有对冲基金找到我们做分析,我们按照我们做此类业务的套路和方法收集了相关数据进行分析(至于是什么样的数据和什么样的分析方法我们在此就不说了)。不管怎样,我们最终的分析结果是商务部反垄断局将不会批准这次集中,幸运的是我们这次分析结果是正确的。相应地,听从我们的建议而做空的客户也就赚了钱。
7年前我们在做上述案例分析的时候,还没有所谓“大数据”或者“小数据”的概念。现在回过头来想想,我们当时(和现在)所做的无非也就是数据分析,当然了,所涉及的数据从总量上看也许不是那么地大,但是相对于具体项目而言已经足够大。当然,是不是一定可以把这些数据看成我们现而今所称的“大数据”也许值得商榷,我们以后另行撰文来讨论,这也是我在本文标题中把“大数据”加上引号的原因。不管怎样,考虑到商务部迄今为止在所有的 1000多件反垄断申报案件中只有2个未获申报,我们当时对概率如此之小的事件能够准确地预判还是令人值得骄傲的,这应当归功于我们收集数据的准确与分析的到位。
如果我们可以把上述成功做空看成是采用“大数据”所做的一个有效分析的话,那么“大数据”分析似乎具有以下几个特点,我们在这里就所谓的特点试图做一个归纳以达到抛砖引玉的目的:
- 大数据分析首先应当是商品。不管数据采集和分析的方法是怎样的,最后出来的产品应当有人化钱购买。没有商业价值的大数据或大数据分析产品是没有价值的,换言之是做不下去的。
-大数据分析产品的开发应当有针对性的客户。不同的客户对大数据分析产品的需求是不一样的。就拿法律行业的上述大数据为例,对大数据及大数据分析产品有直接需求的基本上是做涉外业务的律师事务所及国际大公司,所以上述大数据及大数据分析产品的工作语言基本上都是英语。
- 大数据分析的生命力在于它的准确性。以我们上述案件为例,可口可乐收购汇源被否,汇源股价在紧接着开盘的当天全天暴跌42%。而在这之前可口可乐天价收购汇源的消息曾刺激汇源股价狂飙近200倍。可口可乐在宣布收购汇源果汁之后,其在纽约证交所的股价曾一度出现强劲上升,但在后来的半年里股价下降了20%,这与其收购汇源失败不是没有关联的。可以想象如果我们当时的分析是不准确的,那么客户就得赔钱了。当然,我们这个案件的成功不能不说有一定的偶然性,那么大数据分析是不是有一定的容错?我相信是有的。如果大数据不会犯错,那其就等同于上帝了,但大数据的错误率太高,那么也就没有商业价值,甚至连娱乐价值也都没有了。
在文章最后问一个问题:用数据(不管是大还是小)分析出来的结论来做空算不算是恶意呢?也许这个问题有点“然并卵”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19