
SPSS:相关分析在游戏中的应用_数据分析师考试
凭借着科技的力量进入了大数据时代,收集数据的能力也大大提高,分析师每天与这些“大”数据打交道。在游戏行业,我们拥有成熟的AARRR模型,从获客、活跃、流失和留存、收入到用户传播建立一个完美的闭环。除了常规指标,在分析过程中我们还会建立很多临时指标来辅助分析,面对这么多统计的数据,我们会好奇这些指标或者变量之间是否存在某种相关性,以及相关程度如何,这就用到我们今天要分享的内容——相关分析。
在统计学上,用相关系数来描述变量之间的关系,相关系数的符号(+/-)表明关系的方向(正相关/负相关),其值的大小表示关系的强弱程度。下图是对相关系数的一个解读。
表1 解释相关系数
相关系数的大小 | 一般解释 |
0.8~1.0 | 非常强的相关 |
0.6~0.8 | 强相关 |
0.4~0.6 | 中度相关 |
0.2~0.4 | 弱相关 |
0.0~0.2 | 弱相关或无相关 |
下面列举几个游戏中进行相关分析的应用场景。
1. 玩家付费能力
评估一个玩家的付费能力与哪些因素相关,相关程度如何?
与一个玩家的付费能力相关的因素有性别、年龄、教育程度、游戏时长、游戏频次甚至游戏中好友数。这些或多或少都与付费能力有一定的相关性。需要注意的是,像性别这样的定类变量不支持下面案例中的实现,需要点二列相关系数。
2. 游戏收入
与游戏每天收入可能相关的因素有付费人数、活跃玩家数、付费率、ARPU、道具销售数量、道具价格和玩家总时长(日玩家总时长),哪些因素与收入相关程度密切,哪些因素相关只是偶然性呢?这些在接下来的案例会详细探讨。
3. 道具销量
游戏中要进行相关分析的地方远不止这三个场景,理论上各个因素都可以进行相关性分析,并通过相关系数反映相关程度,还是建议不要盲目分析,在不同时间段,根据自身的分析目的进行探索式分析和验证。
接下来我们看一个相关分析的案例,工具的选择可以根据个人喜好,虽然Excel也可以进行相关分析,但是只列出相关系数,不能进行统计显著性检验,所以推荐使用SPSS。
首先,整理好要分析的数据,这里收集某游戏两个月内每日收入、玩家数、日付费率、付费人数、道具销售数量等数据。
选择分析->相关->双变量,然后选择要研究的变量如下图:
点击确定后得到分析结果如下:
相关性 | ||||||
日付费率 | 付费人数 | 道具销量 | 玩家数 | 收入 | ||
日付费率 | Pearson 相关性 | 1 | .976** | .542** | .070 | .961** |
显著性(双尾) | .000 | .000 | .586 | .000 | ||
N | 62 | 62 | 62 | 62 | 62 | |
付费人数 | Pearson 相关性 | .976** | 1 | .558** | .276* | .954** |
显著性(双尾) | .000 | .000 | .030 | .000 | ||
N | 62 | 62 | 62 | 62 | 62 | |
道具销量 | Pearson 相关性 | .542** | .558** | 1 | .195 | .609** |
显著性(双尾) | .000 | .000 | .129 | .000 | ||
N | 62 | 62 | 62 | 62 | 62 | |
玩家数 | Pearson 相关性 | .070 | .276* | .195 | 1 | .142 |
显著性(双尾) | .586 | .030 | .129 | .272 | ||
N | 62 | 62 | 62 | 62 | 62 | |
收入 | Pearson 相关性 | .961** | .954** | .609** | .142 | 1 |
显著性(双尾) | .000 | .000 | .000 | .272 | ||
N | 62 | 62 | 62 | 62 | 62 |
**. 在置信度(双测)为 0.01 时,相关性是显著的。 |
*. 在置信度(双测)为 0.05 时,相关性是显著的。 |
结果稍微复杂了些(SPSS结果显示比较全面,有些指标不需要关心),我们只选择我们需要的数据来看,只看最后一行(蓝色部分),即收入与其他因素之间的相关性。
从上图结果可知,收入与日付费率和付费人数相关系数分别为0.961和0.954,具有强相关性。收入与道具销量相关系数为0.609,为中度相关。显著性均为0.000远小于0.05,说明分析结果显著。而收入与玩家数(日活跃)相关系数为0.142,弱相关,从显著性检测结果0.272来看大于0.05,说明玩家数对收入相关性不显著,两者存在一定的偶然性。
上面例子中的分析结果并不代表整个游戏行业的数据表现,本文只是传达一个分析方法,在游戏运营中多做一些探索式的相关分析,说不定就能发掘出很大的价值和规律。此外,相关分析只是分析变量之间是否相关以及相关程度如何,并不代表变量之间一定存在因果关系。就像卖冰棍和发生火灾数有很大的相关性,但他们都与温度高(夏天炎热)有关联一样。接下来的文章会讨论回归分析,用数据模型量化这种相关关系,并做一些预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27