SPSS:相关分析在游戏中的应用_数据分析师考试
凭借着科技的力量进入了大数据时代,收集数据的能力也大大提高,分析师每天与这些“大”数据打交道。在游戏行业,我们拥有成熟的AARRR模型,从获客、活跃、流失和留存、收入到用户传播建立一个完美的闭环。除了常规指标,在分析过程中我们还会建立很多临时指标来辅助分析,面对这么多统计的数据,我们会好奇这些指标或者变量之间是否存在某种相关性,以及相关程度如何,这就用到我们今天要分享的内容——相关分析。
在统计学上,用相关系数来描述变量之间的关系,相关系数的符号(+/-)表明关系的方向(正相关/负相关),其值的大小表示关系的强弱程度。下图是对相关系数的一个解读。
表1 解释相关系数
相关系数的大小 | 一般解释 |
0.8~1.0 | 非常强的相关 |
0.6~0.8 | 强相关 |
0.4~0.6 | 中度相关 |
0.2~0.4 | 弱相关 |
0.0~0.2 | 弱相关或无相关 |
下面列举几个游戏中进行相关分析的应用场景。
1. 玩家付费能力
评估一个玩家的付费能力与哪些因素相关,相关程度如何?
与一个玩家的付费能力相关的因素有性别、年龄、教育程度、游戏时长、游戏频次甚至游戏中好友数。这些或多或少都与付费能力有一定的相关性。需要注意的是,像性别这样的定类变量不支持下面案例中的实现,需要点二列相关系数。
2. 游戏收入
与游戏每天收入可能相关的因素有付费人数、活跃玩家数、付费率、ARPU、道具销售数量、道具价格和玩家总时长(日玩家总时长),哪些因素与收入相关程度密切,哪些因素相关只是偶然性呢?这些在接下来的案例会详细探讨。
3. 道具销量
游戏中要进行相关分析的地方远不止这三个场景,理论上各个因素都可以进行相关性分析,并通过相关系数反映相关程度,还是建议不要盲目分析,在不同时间段,根据自身的分析目的进行探索式分析和验证。
接下来我们看一个相关分析的案例,工具的选择可以根据个人喜好,虽然Excel也可以进行相关分析,但是只列出相关系数,不能进行统计显著性检验,所以推荐使用SPSS。
首先,整理好要分析的数据,这里收集某游戏两个月内每日收入、玩家数、日付费率、付费人数、道具销售数量等数据。
选择分析->相关->双变量,然后选择要研究的变量如下图:
点击确定后得到分析结果如下:
相关性 | ||||||
日付费率 | 付费人数 | 道具销量 | 玩家数 | 收入 | ||
日付费率 | Pearson 相关性 | 1 | .976** | .542** | .070 | .961** |
显著性(双尾) | .000 | .000 | .586 | .000 | ||
N | 62 | 62 | 62 | 62 | 62 | |
付费人数 | Pearson 相关性 | .976** | 1 | .558** | .276* | .954** |
显著性(双尾) | .000 | .000 | .030 | .000 | ||
N | 62 | 62 | 62 | 62 | 62 | |
道具销量 | Pearson 相关性 | .542** | .558** | 1 | .195 | .609** |
显著性(双尾) | .000 | .000 | .129 | .000 | ||
N | 62 | 62 | 62 | 62 | 62 | |
玩家数 | Pearson 相关性 | .070 | .276* | .195 | 1 | .142 |
显著性(双尾) | .586 | .030 | .129 | .272 | ||
N | 62 | 62 | 62 | 62 | 62 | |
收入 | Pearson 相关性 | .961** | .954** | .609** | .142 | 1 |
显著性(双尾) | .000 | .000 | .000 | .272 | ||
N | 62 | 62 | 62 | 62 | 62 |
**. 在置信度(双测)为 0.01 时,相关性是显著的。 |
*. 在置信度(双测)为 0.05 时,相关性是显著的。 |
结果稍微复杂了些(SPSS结果显示比较全面,有些指标不需要关心),我们只选择我们需要的数据来看,只看最后一行(蓝色部分),即收入与其他因素之间的相关性。
从上图结果可知,收入与日付费率和付费人数相关系数分别为0.961和0.954,具有强相关性。收入与道具销量相关系数为0.609,为中度相关。显著性均为0.000远小于0.05,说明分析结果显著。而收入与玩家数(日活跃)相关系数为0.142,弱相关,从显著性检测结果0.272来看大于0.05,说明玩家数对收入相关性不显著,两者存在一定的偶然性。
上面例子中的分析结果并不代表整个游戏行业的数据表现,本文只是传达一个分析方法,在游戏运营中多做一些探索式的相关分析,说不定就能发掘出很大的价值和规律。此外,相关分析只是分析变量之间是否相关以及相关程度如何,并不代表变量之间一定存在因果关系。就像卖冰棍和发生火灾数有很大的相关性,但他们都与温度高(夏天炎热)有关联一样。接下来的文章会讨论回归分析,用数据模型量化这种相关关系,并做一些预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03