
大数据时代下 如何让数据驱动业务_数据分析师考试
如何让数据驱动业务?这是大数据时代下企业必须思考的关键问题。如今,企业需要应对太多的业务部门需求,而数据的复杂性决定了企业必须利用商务智能以应对业务需求的变化和不确定性,信息处理能力的强弱决定了企业兴衰成败的关键。很多企业花费了大量的财力、人力、物力去构建联机事务处理(OLTP)和企业资源计划(ERP),积累了大量的数据,然而传统的分析工具很难及时、准确地对这些数据进行商务分析,商务智能技术的产生为这些问题提供了解决方案。
然而,基于数据分析的商务智能平台在大数据时代面临着越来越多的机遇和挑战,许多企业在商务智能问题的认识上存在许多误区,以下列举了六种常见的问题。
让IT部门管的太多
让IT部门做商务智能平台采购,结果往往不尽如人意,这是因为为了使采购风险最小化,IT部门大多把注意力放在稳定性、可扩展性、安全性和供应商声誉这类因素上。
而Boris Evelson——Forrester Research的分析师,他警告我们最好不要这样做,在采购决定上给终端用户(IT部门人员)太多的发言权会是一个代价高昂的错误。
Boris Evelson还指出:“桌面系统或云系统可以满足商业用户的需求,而且这样不需要依赖IT报告开发商,但也可能会导致解决方案不安全或者不可靠,所以最好折中考虑。”
忽视用户的商务智能需求
企业在投资商务智能时,最可能犯的一个错误是没有将系统性能与用户的实际需求结合起来。这一点在很多人看来似乎并不重要,然而,很多企业都会因为这个基本错误导致商务智能系统实施的失败。
Rita Sallam是Gartner的分析师,她在谈到商务智能时告诉我们:“这些系统会花费企业数百万美元,有时候它们能提供的实际价值却很少,甚至没有,最关键的原因在于采购和用户需求不匹配。”
要避免这样的问题,至关重要的一点是要建立一个具体的用户需求报告功能,确保用户参与到商务智能系统的采购和实施中。Sallam还告诉我们:“可能出现用户需要交互式报表,而系统只能生成静态报表这样的情况,也有可能出现系统功能太简单或者太复杂的情况。”
低估用户培训和用户支持的成本
“许多企业在作商务智能的预算时,仅考虑购买软件的成本,当然也许会考虑短期(比如两个星期)的用户培训成本。如今商务智能系统的复杂度不容低估,要想从系统中获得真正的价值必须有更长时间的用户培训。”
在不久前的一次统计中,大约30%的企业已经计划使用基于云的商务智能平台。根据Gartner调查显示,这一数字现在已经超过了45%。Sallam表示:“这意味着就算你选择的商务智能系统供应商目前没有基于云的产品,那它也至少应该有这样的计划,以满足你未来可能的商务智能需求。”
当然对于未来需求,云不是唯一需要考虑的因素,还要考虑怎样让复杂的分析变得易于用户理解,考虑如何将交互式发现转变为自动发现,供应商的产品路线图中至少有相关的计划。
很多企业选择商务智能系统供应商时,缺乏一些长远的考虑,比如供应商能否满足企业未来的需求,缺乏长远考虑会导致商务智能系统只能在短期发挥作用。
缺乏整体考虑
商务智能实际上主要用于分析数据,如果你打算访问JD Edwards、PeopleSoft、SAP或者其他大型ERP系统中的数据,那就不能低估商务智能的作用。Evelson提醒我们:“访问数据并不容易,访问数据不是说简单地访问数据库,还需要理解元数据以及数据的布局方式。”
为节约成本采用非专业的商务智能工具
Evelson告诉我们,所有业务分析中,大约有80%是使用简单工具完成的,这些工具包括Microsoft Excel和Access。采用非专业的商务智能工具也有好处,比如便宜、易于使用而且高效(针对简单的业务分析)。
但是非专业商务智能工具只适用于小型企业:它们可以分析TB级数据,但对于处理更大的信息量就显得吃力了;它们会产生一个“孤立的电子表格库(spreadsheet silos)”;对于同一个问题,针对企业的不同部门,可能会给出不同的回答,因为它们对于同一事件没有统一的描述。
更糟糕的是,非专业智能工具会带来安全和业务风险,Evelso 警告我们:“对于‘谁可以访问数据、谁可以处理数据’,你很难作出限制,而且一旦数据或者某个公式出错,那基于这些处理结果得到的信息会带来很大的问题。”
此外,不同的企业所处商务智能的阶段不同,面临的问题也不一样,一些企业商务智能平台已经发展到数据挖掘阶段,有些则处于数据分析阶段,甚至很多企业还处于报表阶段。处于报表阶段企业的商务智能往往面临数据量很大、有价值信息太少的问题,数据处理难度大。定制好的报表缺乏灵活性,因为业务经常要从多个角度分析问题,所以用户需要交互性报表,了解到不同数据的组合并产生新的信息,解决新的问题。
写在最后
正确地认识这些问题是发展“企业”商务智能的关键,这里的企业其实包含了各行各业的组织机构。比如政府部门、教育机构、医疗机构和公用事业,商务智能有着广泛的适用面。商务智能问题其实也是一类数据管理问题,包括对数据的存储、提取、清洗、转换、装载、整合……一系列的数据处理,为的是提高数据的质量和安全性。企业要充分发挥出商务智能的优势,必须依靠更加强有力的工具,这有赖于人工智能、机器学习、数据仓库技术、专家智能系统等科学技术的进步和发展。商务智能体系的建立是一项长期、艰巨的任务,企业需要很强的领导力和执行力才能保证商务智能发挥出真正的优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04