京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何看待利用大数据做疾病诊断这件事_数据分析师考试
起因是朋友的实习生跟朋友打了一个多小时的电话BLABLA各种向往移动医疗,号称大数据能改变医疗现状引领人类走向新时代(误
而我俩约了吃饭结果我呆呆一个人吃了半天心生怨念
---------------------------又是分割线---------------------------------------
我就想举个例子就是Dr,Saint SYR。
他是一名来自美国的全科医生,一直在北京普及PM2.5和空气污染等的相关知识(室内点蜡烛和吸烟会弄出特别多的PM2.5哦!),结果在去年11月因为单纯性呼吸困难给自己诊断了哮喘,使用支气管扩张剂之后明显好转,大家可以想象一下一个天天宣传怎么戴口罩开空气净化器的大夫得了这个病是如何得打脸。。
而他也经历了相当多的斗争,思考是不是要回美国。事情再今年2月又了变化,他的病情进展了,发现其实是细菌性的肺炎!抗生素治疗之后啥啥都好了!
讲这个故事,因为:
1,这是个很很有意思的八卦
2,很多人觉得之前的诊断是误诊,包括采访他的媒体都是这么报道的,但是我真觉得不是误诊
3,疾病在不同阶段展现出来的症状体征真的不一定典型,怎么能让数据诊断不变成数据误导医生诊断呢?
那些什么多中心回顾性的循证医学的实验,也是处理各种数据,对方这么多年都做不出来的数据,缘何这么多人如此信心满满?
首先表明观点:我认为,自动化诊断是未来趋势,但现在不成熟,有很大的发展空间。
最先要指出的是,大数据诊断,并非单纯的收集数据得出统计结论,而是有一定的人工智能算法在其中起推断作用。其中简单有效,而且最符合人的判断逻辑的算法叫做贝叶斯网络,在足够多的数据(这点很难就是了)的前提下,完全可以比任何一个个人人做出的判断更加准确。在数据不足的情况下,也有可以和不少个人媲美的推断能力,至少在少见病的诊断上,其准确率是远远高于人的。国外有这样的诊断辅助产品,就是针对少见病诊断市场。国内目前完全空白。
我们先来看看现在的临床诊疗。
1、现代医学是循证医学(EBM)。也就是临床实践都是以基础科学研究和大规模的临床实验结果作为支持的。这些结论,都是大量的数据采集和分析的结果。
2、现代医学的临床实践仍然处于经验为主的阶段,EBM的结论,并不能直接完全覆盖实际病人身上发生的具体情况。基于EBM的基础部分的结论,结合实践经验,仍然是现阶段临床实践最重要的方式。
3、大量未得到良好教育和缺乏检查受手段的医务工作,仍然是目前医疗的主要力量,尽管国内有最好教育的医生和最好检查手段的三甲医院,依然人满为患。
4、全科医生的作用被严重低估,而大量专科医生扮演起了全科医生的角色,化了很大的精力在处理一些“小病”上。
总结一下就是:EBM指导的部分有局限,EBM+经验医疗是主流,条件差,水平低,专业不对口的医生是主流。
大数据可以解决什么问题呢:
1、扩大EBM的适用范围。如果可以精确地采集数据,EBM在医疗中的比重将更快地上升,总体医疗质量提高。
2、个人经验无关紧要,大数据将使得个人经验跟多地转变成全人类经验,误诊、漏诊将大大减少,从而提高整体医疗质量。
3、医院分工、医生分工将更加明确:大医院解决负责病情,中医院解决一般病情,小医院解决慢性病于预防接种保健。因为医生的诊断已经不依赖个人经验,从而对普通疾病和罕见疾病的准确率可以有保证;只有病情复杂,治疗手段复杂,需要建立MDT(多学科团队)的病人,才需要大医院和专家的处理。
4、所有医生的工作负担均会一定程度上的减轻,从而带给病人的医疗服务质量会有提升。
而现阶段大数据做不到的事情:
1、精确地、自动化地数据采集。毫无疑问,同一个样品去不同医院的实验室同时做化验,结果都会不同,这已经是自动化程度非常高的了(这个问题其实可以通过实验室间校准解决)。跟别提那些可穿戴设备了,可以达到临床参考级别的设备实在是太少。而医疗数据的维度也特别高,如何让大数据去自动处理病人的CT资料?而病史,体检等描述性资料,更离不开临床工作者的采集。总之,数据采集方面,完全没办法离开一线临床工作者。
2、To cure sometimes,to relieve often,to comfort alway. ——E. L. Trudeau。真正能治愈的疾病实在是少得可怜(其实大多也不是治好的,只是身体自己好的),更多的时候,医生做的只是在减轻痛苦,抚慰心灵。这部分工作,大数据能帮上的忙就十分有限度,大数据最多只是减轻医生其他方面的工作,从而换取更多的精力到人文关怀上。
真正可以靠大数据看病了,那得是人工智能发展到可以超越大部分人类的时候了。但并不意味着大数据在现阶段完全没有价值。这部分的价值其实是非常巨大的,只是要找到有能力去做的人,同时又能找到买单的人很困难。就像Google研究无人驾驶汽车一样,未来一定会大部分时候完全无人驾驶,而现在的无人驾驶技术依然有巨大的技术价值(比如说可以避免很多高速公路上的车祸)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23