
如何看待利用大数据做疾病诊断这件事_数据分析师考试
起因是朋友的实习生跟朋友打了一个多小时的电话BLABLA各种向往移动医疗,号称大数据能改变医疗现状引领人类走向新时代(误
而我俩约了吃饭结果我呆呆一个人吃了半天心生怨念
---------------------------又是分割线---------------------------------------
我就想举个例子就是Dr,Saint SYR。
他是一名来自美国的全科医生,一直在北京普及PM2.5和空气污染等的相关知识(室内点蜡烛和吸烟会弄出特别多的PM2.5哦!),结果在去年11月因为单纯性呼吸困难给自己诊断了哮喘,使用支气管扩张剂之后明显好转,大家可以想象一下一个天天宣传怎么戴口罩开空气净化器的大夫得了这个病是如何得打脸。。
而他也经历了相当多的斗争,思考是不是要回美国。事情再今年2月又了变化,他的病情进展了,发现其实是细菌性的肺炎!抗生素治疗之后啥啥都好了!
讲这个故事,因为:
1,这是个很很有意思的八卦
2,很多人觉得之前的诊断是误诊,包括采访他的媒体都是这么报道的,但是我真觉得不是误诊
3,疾病在不同阶段展现出来的症状体征真的不一定典型,怎么能让数据诊断不变成数据误导医生诊断呢?
那些什么多中心回顾性的循证医学的实验,也是处理各种数据,对方这么多年都做不出来的数据,缘何这么多人如此信心满满?
首先表明观点:我认为,自动化诊断是未来趋势,但现在不成熟,有很大的发展空间。
最先要指出的是,大数据诊断,并非单纯的收集数据得出统计结论,而是有一定的人工智能算法在其中起推断作用。其中简单有效,而且最符合人的判断逻辑的算法叫做贝叶斯网络,在足够多的数据(这点很难就是了)的前提下,完全可以比任何一个个人人做出的判断更加准确。在数据不足的情况下,也有可以和不少个人媲美的推断能力,至少在少见病的诊断上,其准确率是远远高于人的。国外有这样的诊断辅助产品,就是针对少见病诊断市场。国内目前完全空白。
我们先来看看现在的临床诊疗。
1、现代医学是循证医学(EBM)。也就是临床实践都是以基础科学研究和大规模的临床实验结果作为支持的。这些结论,都是大量的数据采集和分析的结果。
2、现代医学的临床实践仍然处于经验为主的阶段,EBM的结论,并不能直接完全覆盖实际病人身上发生的具体情况。基于EBM的基础部分的结论,结合实践经验,仍然是现阶段临床实践最重要的方式。
3、大量未得到良好教育和缺乏检查受手段的医务工作,仍然是目前医疗的主要力量,尽管国内有最好教育的医生和最好检查手段的三甲医院,依然人满为患。
4、全科医生的作用被严重低估,而大量专科医生扮演起了全科医生的角色,化了很大的精力在处理一些“小病”上。
总结一下就是:EBM指导的部分有局限,EBM+经验医疗是主流,条件差,水平低,专业不对口的医生是主流。
大数据可以解决什么问题呢:
1、扩大EBM的适用范围。如果可以精确地采集数据,EBM在医疗中的比重将更快地上升,总体医疗质量提高。
2、个人经验无关紧要,大数据将使得个人经验跟多地转变成全人类经验,误诊、漏诊将大大减少,从而提高整体医疗质量。
3、医院分工、医生分工将更加明确:大医院解决负责病情,中医院解决一般病情,小医院解决慢性病于预防接种保健。因为医生的诊断已经不依赖个人经验,从而对普通疾病和罕见疾病的准确率可以有保证;只有病情复杂,治疗手段复杂,需要建立MDT(多学科团队)的病人,才需要大医院和专家的处理。
4、所有医生的工作负担均会一定程度上的减轻,从而带给病人的医疗服务质量会有提升。
而现阶段大数据做不到的事情:
1、精确地、自动化地数据采集。毫无疑问,同一个样品去不同医院的实验室同时做化验,结果都会不同,这已经是自动化程度非常高的了(这个问题其实可以通过实验室间校准解决)。跟别提那些可穿戴设备了,可以达到临床参考级别的设备实在是太少。而医疗数据的维度也特别高,如何让大数据去自动处理病人的CT资料?而病史,体检等描述性资料,更离不开临床工作者的采集。总之,数据采集方面,完全没办法离开一线临床工作者。
2、To cure sometimes,to relieve often,to comfort alway. ——E. L. Trudeau。真正能治愈的疾病实在是少得可怜(其实大多也不是治好的,只是身体自己好的),更多的时候,医生做的只是在减轻痛苦,抚慰心灵。这部分工作,大数据能帮上的忙就十分有限度,大数据最多只是减轻医生其他方面的工作,从而换取更多的精力到人文关怀上。
真正可以靠大数据看病了,那得是人工智能发展到可以超越大部分人类的时候了。但并不意味着大数据在现阶段完全没有价值。这部分的价值其实是非常巨大的,只是要找到有能力去做的人,同时又能找到买单的人很困难。就像Google研究无人驾驶汽车一样,未来一定会大部分时候完全无人驾驶,而现在的无人驾驶技术依然有巨大的技术价值(比如说可以避免很多高速公路上的车祸)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20