
数据分析师?架构师?科学家?大数据时代的热门职业
大数据已是当下信息时代一个非常热的概念,大数据时代到来,将给人才发展带来哪些机会?谁将是未来最热门的人才?大数据时代的热门职业都有哪些?让我们一起来看看吧——
说起大数据,可能你还会觉得云里雾里,实际上,大数据就发生在你我身边,和小编一起先来点入门级的——
关键词:数据分析师考试、数据分析师培训、cda数据分析师考试,cda数据分析师报名
你的通话记录、上网记录,会留在三大电信运营商那里;
你的身份、家庭房产信息,会通过刷信用卡而被银行知晓;
你去了哪里,现在哪里,又会通过手机定位系统而泄露,百度、腾讯、阿里是目前大数据的主导拥有者和使用者;
政府也掌握相应的大数据。通过这些数据都勾勒出你的基本面貌,也就是说,你的一举一动尽在大数据掌控中。亲们,有木有觉得害怕?
大数据已深入到日常生活的诸多领域,在许多行业发挥着重要作用。
大数据到底有什么用?
大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。
举个例子——2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据时代,人们的思维方式不再是原有的因果关系,而是相关关系,它的核心是预测,并且不是基于随机样本,而是全体数据,利用计算机技术强大的处理和分析能力为人们提供决策。
大数据时代最需要什么样的人才?
●全球大数据人才荒
美国软件就业市场调查,Big Data(大数据)和 Cloud Computing(云计算)是目前市场上最迫切需要的人才。研究机构Gartner更预测,2015年全球将有440万个巨量资料相关之IT工作职缺,但目前尚未有真正以巨量资料为背景的学科,因此人才缺口恐达三分之二。
“埃森哲”开展的一项调查,研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析人才的需求发现,到2015年,除中国之外都面临胜任数据分析科学家的净短缺。中国因为需求不足似乎还出现了少量的过剩。
●赋予数字意义的能力
美国USNEWS预测2020年十大最佳职业,第一名即是与巨量数据有关的数据运算人员(数据科学家)。
为了要精算、推演出海量数据库得到结论,除了需要IT、统计背景的人才外,更需要产业专家赋予数字意义,一窥其中奥秘。专家表示,虽说大数据人才时代来临,但别忘了大数据人才市场里看中的是“赋予数字意义的能力”,算法、数学模型可以只学概念,但解读数据的本事却是无可取代的。
●政府和企业的高层管理者
专家提出,一提大数据时代,就认为我们最需要数据技术人才,比如计算机人才和数学工程人才,也是一种错觉。
我们确实很需要数据技术人才,但真正能够帮助政府和企业转变思维、应对大数据挑战的人才不是一个来自IT部门的技术专家,而是政府和企业的高层管理者。对目前的中国来说,对大数据管理人才需求的迫切性要超越对技术人才需求的迫切性。政府和企业的领导者,也要学习用数据思考、说话和管理。
大数据时代的热门职业
下面小编为您介绍大数据时代下的热门职业。不仅具有高收入的特点,也有令人羡慕的时代属性,而且随着大数据的发展,未来会有更多的热门职业涌现。
●数据规划师
在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。
●数据工程师
大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。
●数据架构师
擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。
●数据分析师
职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07