
今天凌晨4点,德国对巴西的世界杯本决赛给了所有人一个大大的惊叹号。德国7:1战胜巴西,让人瞠目,巴西如此惨败,实属难料。也许连谷歌的大数据预测也没有预测到7:1的悬殊差距。
在这种情况下,讨论用大数据精准预测世界可能稍显牵强,但是毕竟,大数据预测是趋势。
大数据发展到今天,虽然离完美预测还有一段距离,然而,不可否认,相信数据比相信直觉更加靠谱。抛开今天凌晨这场“大比分”的比赛不谈,谷歌、百度、微软等通过分析大数据对世界杯的前期预测准确的同样让人惊奇。
谷歌的云计算平台成功预测了世界杯16强比赛每场比赛的胜利者。据了解,谷歌使用来自实时体育比赛数据公司Opta Sports的数据,以及由BigQuery工程师乔丹·提加尼开发的实力排行榜系统,更考虑了观众热情程度数据,以计算出主队优势,从而预测赛果。此 外,谷歌使用这一系统来预测世界杯8强的比赛,结果也惊人地准确:巴西对哥伦比亚,巴西胜概率为71%;法国对德国,法国胜概率为69%;荷兰对哥斯达黎 加,荷兰胜概率为68%;阿根廷对比利时,阿根廷胜概率为81%。
事实上,对于预测结果,谷歌并不是唯一做出完美预测的公司,百度、微软必应也进行了预测,大家的共同点都在于是依据云数据系统的综合分析来做出预测。
随着大数据行业的发展,谷歌、亚马逊、阿里、百度、腾讯,都因为拥有大量的用户注册和运营信息,自然地成为大数据公司。各种数据的记录也许看起来是随机的,但是当这些数据由光速电脑进行分析之后,便会揭示出影像、模式、联系和趋势,不仅可以提高业务绩效,更改变生活。
谷歌、百度等搜索引擎不仅存储了搜索结果中出现的网络连接,还会储存用户搜索关键词的行为,它能够精准地记录下人们进行搜索行为的时间、内容和方式,在你意识到自己要找什么之前预测出你的意图。
去年春节期间,百度已经开始了对于春节人口流动趋势的预测;今年清明和五一,百度对全国各大景区、城市的人流热度做了预测,其针对2014年高考作 文命题方向的预测更是“命中”了全国18套考题中的12套。据了解,百度的“高考预测”还可以利用历史搜索数据、历年的录取分数、各批次省控线预测全国各 个大学的报考热度、难度,各种专业的报考趋势以及本省考生都对哪些专业、学校感兴趣等。百度CEO李彦宏表示,“对数据的挖掘整理只是大数据技术的初级阶 段。除了通过大数据分析规律、趋势,机器必须还要会自主思考才行。”
除了IT企业计划的疾病预测、房地产预测、就业预测、金融预测,我国疾控中心也计划运用大数据,提前确定一定规模的未知疾病,为疫情控制争取时间。
不过,从目前来看,大数据的分析预测能力还远未完善。2009年,甲型H1N1流感爆发的几周前,“谷歌流感趋势”预测了流感在美国境内的传播,其 分析结果甚至具体到特定的地区和州,并且非常及时,令公共卫生官员倍感震惊。不过,2013年,谷歌对于流感的预测与美国疾病控制中心汇总后的结果相比, 夸大了几乎一倍。
业界认为,未来“大数据的精准分析不仅有赖于数据资源的扩充,更要基于大数据引擎的发展进步。”据了解,IBM已推出大数据行业方案,英特尔入股了大数据初创企业Cloudera,还推出了基于Hidoop的“大数据引擎”。
专家:
数据协同和隐私问题待解
谷歌、IBM、甲骨文、SAP等企业在大数据领域进行了技术创新,越来越多的国外企业凭借技术优势和先行经验进军大数据市场。然而,我国大数据产业 发展仍然处于起步阶段。“每一次点击、触摸、短信、微信、微博、驾驶、飞行、通话、拍照、购买等都产生数据……虽然每天在产生大量数据,却没有显示出足够 的威力。”赛迪顾问分析师表示,“交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,卫生部门拥有流感法定报告数据、全国流感样 病例哨点监测和病原学监测数据,公安部门有大量的视频监控数据,但政府部门几乎都没有大数据处理和挖掘技术。”
除了互联网公司,沃尔玛、中国移动等传统企业也掌握着大量用户数据,平台企业互相独立地应用数据淘金,各取所需,但数据的私密占有严重制约着大数据的广泛应用和融合发展。“大数据的协同可以实现智能路径规划、运力管理、流感预测、疫苗接种指导、安防追逃等。”
《大数据时代》一书中指出,“大数据本身探寻的是一种趋势,而非精准性,若要无限接近统计结果,必须让大数据与精细的传统统计方法互补,而非两者相互替代。”
此外,数据的隐私问题也仍然待解。谷歌斥巨资投入的癌症预测项目中,仅有4%的癌症患者参与到了临床试验数据库项目中,这也就意味着高达96%病患的医疗和综合体征信息难以被其他医疗机构或者医生轻易获悉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16