京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R编程语言在数字分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员只有加以了解后才能充分发挥它的强大能力。
正如Tiobe、PyPL以及Redmonk等编程语言人气排名所指出,R语言所受到的关注程度正在快速提升。作为一款诞生于上世纪九十年代的语言,R已经成为S统计编程语言的一类实现方式。已经拥有十八年R编程经验的高校教授兼Coursera在线平台培训师Roger Peng指出,“R语言已经成为统计领域最具人气的语言选项”。
“我之所以喜爱R语言,是因为它易于从计算机科学角度出发实现编程,”Peng表示。而R语言随时间推移正呈现出愈发迅猛的发展态势,并成为能够将不同数据集、工具乃至软件包结合在一起的胶水型语言,Peng解释道。
“R语言是创建可重复性及高质量分析的最佳途径。它拥有数据处理所必需的一切灵活性及强大要素,”在线编程教育机构Code School数据科学家Matt Adams指出。“我用R语言编写的大部分程序实际上都是在将各类脚本整理到项目当中。”
R语言拥有强大的软件包生态系统与图表优势
R语言的优势主要体现在其软件包生态系统上。“庞大的软件包生态系统无疑是R语言最为突出的优势之一——如果某项统计技术已经存在,那么几乎必然存在着一款R软件包与之对应,”Adams指出。
“其中内置有大量专门面向统计人员的实用功能,”Peng表示。R语言具备可扩展能力且拥有丰富的功能选项,帮助开发人员构建自己的工具及方法,从而顺利实现数据分析,他进一步解释称。“随着时间的推移,越来越多来自其它领域的用户也被吸引到了R身边来,”其中包括生物科学乃至人文学科等。
“人们能够在无需申请权限的前提下对其进行扩展。”事实上,Peng回忆称多年之前R的使用方式就已经给相关工作带来了巨大便利。“当R语言刚刚诞生之时,它最大的优势就是以自由软件的姿态出现。其源代码以及所有一切都可供我们直接查看。”
Adams也表示,R语言在图形及图表方面的一切能够都是“无与伦比”的。其dplyr与ggplot2软件包分别用于进行数据处理与绘图,且“能够非常直观地提升我的生活质量,”他感叹道。
在机器学习方面,R语言的优势则体现在与学术界的强大联动效应,Adams指出。“在这一领域的任何新型研究成果可能都会马上以R软件包的形式体现出来。因此从这个角度看,R语言始终站在技术发展的尖端位置,”他表示。“这种接入软件包还能够提供良好的途径,帮助我们利用相对统一的API在R语言环境下实现机器学习研究。”Peng进一步补充称,目前已经有众多主流机器学习算法以R语言作为实现手段。
R的短板在于安全性与内存管理
说了这么多优势,R语言当然也存在着一定不足。“内存管理、速度与效率可能是R语言面临的几大最为严峻的挑战,”Adams指出。“在这方面,人们仍然需要努力推动——而且也确实正在推动——其进展与完善。此外,从其它语言转投R怀抱的开发人员也会发现后者在某些设定上确实有些古怪。”
R语言的基本原理来自上世纪六十年代出现的各类编程语言,Peng解释道。“从这个意义上讲,R语言在设计思路上属于一项古老的技术成果。”这种语言的设计局限有时候会令大规模数据集处理工作遇到难题,他强调称。因为数据必须被保存在物理内存当中——但随着计算机内存容量的不断提升,这个问题已经在很大程度上得到了解决,Peng指出。
安全等相关功能并没有被内置在R语言当中,Peng指出。此外,R语言无法被嵌入到网络浏览器当中,Peng表示。“我们不能利用它开发Web类或者互联网类应用程序。”再有,我们基本上没办法利用R语言当作后端服务器执行计算任务,因为它在网络层面缺乏安全性保障,他表示。不过Amazon Web Services云平台上的虚拟容器等技术方案的出现已经在很大程度上解决了此类安全隐患,Peng补充道。
长久以来,R语言当中始终缺少充足的交互元素,他表示。但以JavaScript为代表的各类编程语言介入其中并填补了这项空白,Peng指出。虽然我们仍然需要利用R语言处理分析任务,但最终结果的具体显示方式则可以由JavaScript等其它语言来完成,他总结道。
R语言并不单纯面向高端程序员
不过Adams与Peng都会R视为一种易于接受的语言。“我本人并没有计算机科学教育背景,而且从来没想过要当一名程序员。将编程基础知识纳入技能储备当然很不错,但这并不是上手R语言的必要前提,”Adams指出。
“我甚至并不认为R语言只适用于程序员。它非常适合那些面向数据并试图解决相关问题的用户——无论他们的实际编程能力如何,”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09