京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据打造高效“机器选股”时代_数据分析师考试
曲径,美国卡内基梅隆大学计算金融硕士,9年证券从业经验。历任中信证券[-2.61% 资金 研报](600030,股吧)另类投资业务线高级副总裁,美国千禧年对冲基金量化投资高级研究员及副总裁。2015年3月加入中欧基金,现任中欧基金量化策略组投资总监。
A股6月中旬以来的剧烈波动,并没有影响曲径的投资节奏。相反,作为中欧基金量化策略组的负责人,曲径却透过A股市场的大幅波动,看到了量化投资的新机遇。
“目前A股的波动率远远高于发达国家的股票市场,市场的非有效性更加明显。很多量化策略的本质是为市场注入流动性,A股的现状比较适合这类策略的发挥。”曲径说,“基于A股的量化对冲产品,提供了收益率介于固定收益和股票投资之间的投资品种,丰富了投资人的资产配置范围,有可能吸引更多追求中低风险的资金流入市场。同时,伴随着大数据时代的来临,量化选股的手段趋于多元化,利用‘机器选股’更加有效,这也会显著提升收益的稳定性。”对于大数据时代的投资逻辑,曲径有着独到的见解。
中国证券报:大数据时代来临,你认为大数据对A股市场投资会产生怎样的影响?
曲径:随着计算机运算速度的大幅提升,以及分布式计算的技术推广,使得基于大数据的投资成为可能。
通过整合多元数据,包括网络用户行为数据,舆情信息的扩散与信息影响的追踪,零售消费的大数据整合等,深入变革传统的股票投资行为。例如,通过互联网用户的数据分析,消费者对地产门户网站的访问行为,以及特定楼盘主页的访问热度,我们可以预估整体地产行业销售的趋势,这种通过大数据得到的预测,要比官方住宅销售的事后统计更有前瞻性和预测性。量化投资的基础是信息获取和信息处理。通过这些有效信息的获取,我们在股票投资上就可以领先一步。由此可见,在未来投资中,数据的作用将尤其重要。
中国证券报:作为资深量化投资人,你会通过怎样的投资逻辑来把握大数据时代的机遇?
曲径:大数据的应用,使机器学习选股成为未来趋势。量化选股是基于大数定律的投资方式,如果选股模型的预期胜率较高,在样本量足够大且投资分散的情况下,最终的投资效果,将很接近预测的胜率,获得盈利。
在大数据时代的量化投资具有一些明显的特征。例如,需要整合海量数据,以此挖掘多元化的交易机会。金融工程师通过构建数学模型,使其选股的方法具有可复制、可持续的特性。同时,通过优化且分散的投资操作,量化产品有效地规避了个股风险,使其与传统股票型基金的相关度较低。
此前,主流的量化投资多为量化多因子模型和统计套利模型,这类模型在2007年达到了顶峰。当时,华尔街很多基金使用的量化模型高度相似,以2007年8月的“量化实效”为触发点,某只基金清仓时,触发了类似的基金大幅回撤,从而引发了量化踩踏事件。事实上,同质化的投资,由于有后续资金持续涌入,短期会产生看似很好的收益,但是一旦发生行情反转,集体亏损这样的极端事件难以避免,其结果就像我们刚刚经历的A股流动性危机那样。
正是经历过美国量化投资的兴起和挤兑,我对投资策略的差异性非常重视,只有选到独立研发的,与主流模型有差异的阿尔法,才能保证策略的可持续性。而基于大数据的分析框架,使我们的数据源更独特,策略体系更为稳健,与传统投资方式选出的股票相关度低。在中欧量化策略组中,我们坚持追求“独立研发的、高胜率的”的投资方法。
中国证券报:为什么选择到中欧基金发展自己的事业?目前量化投资策略组的团队构建情况如何?
曲径:我很喜欢中欧基金的合伙人文化。中欧基金平等、开放的风格,极大提高了内部的协同效率,给传统基金行业注入了创业的精神。作为量化投资团队,我们的基础工作依赖IT技术部门和产品设计部门的协同支持,中欧基金效率之高,对我来说是个惊喜。从我个人的角度来说,中欧基金一致的合伙人愿景,提升了团队的效益,最小化公司内部损耗;而市场化的激励机制保证了投资团队的稳定性,将投资团队与客户利益一致化,才能持续为投资人提供价值。
具体团队方面,量化策略组和其他策略组不同,我们本质上是一个工程师团队。每一个人都有数学建模能力,编程能力,对数字敏锐,热爱数据分析。目前,团队由三个小组构成:大数据核心研究、投资组合构建、算法交易执行。这三大支柱是我们构建量化模型的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27