京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据打造高效“机器选股”时代_数据分析师考试
曲径,美国卡内基梅隆大学计算金融硕士,9年证券从业经验。历任中信证券[-2.61% 资金 研报](600030,股吧)另类投资业务线高级副总裁,美国千禧年对冲基金量化投资高级研究员及副总裁。2015年3月加入中欧基金,现任中欧基金量化策略组投资总监。
A股6月中旬以来的剧烈波动,并没有影响曲径的投资节奏。相反,作为中欧基金量化策略组的负责人,曲径却透过A股市场的大幅波动,看到了量化投资的新机遇。
“目前A股的波动率远远高于发达国家的股票市场,市场的非有效性更加明显。很多量化策略的本质是为市场注入流动性,A股的现状比较适合这类策略的发挥。”曲径说,“基于A股的量化对冲产品,提供了收益率介于固定收益和股票投资之间的投资品种,丰富了投资人的资产配置范围,有可能吸引更多追求中低风险的资金流入市场。同时,伴随着大数据时代的来临,量化选股的手段趋于多元化,利用‘机器选股’更加有效,这也会显著提升收益的稳定性。”对于大数据时代的投资逻辑,曲径有着独到的见解。
中国证券报:大数据时代来临,你认为大数据对A股市场投资会产生怎样的影响?
曲径:随着计算机运算速度的大幅提升,以及分布式计算的技术推广,使得基于大数据的投资成为可能。
通过整合多元数据,包括网络用户行为数据,舆情信息的扩散与信息影响的追踪,零售消费的大数据整合等,深入变革传统的股票投资行为。例如,通过互联网用户的数据分析,消费者对地产门户网站的访问行为,以及特定楼盘主页的访问热度,我们可以预估整体地产行业销售的趋势,这种通过大数据得到的预测,要比官方住宅销售的事后统计更有前瞻性和预测性。量化投资的基础是信息获取和信息处理。通过这些有效信息的获取,我们在股票投资上就可以领先一步。由此可见,在未来投资中,数据的作用将尤其重要。
中国证券报:作为资深量化投资人,你会通过怎样的投资逻辑来把握大数据时代的机遇?
曲径:大数据的应用,使机器学习选股成为未来趋势。量化选股是基于大数定律的投资方式,如果选股模型的预期胜率较高,在样本量足够大且投资分散的情况下,最终的投资效果,将很接近预测的胜率,获得盈利。
在大数据时代的量化投资具有一些明显的特征。例如,需要整合海量数据,以此挖掘多元化的交易机会。金融工程师通过构建数学模型,使其选股的方法具有可复制、可持续的特性。同时,通过优化且分散的投资操作,量化产品有效地规避了个股风险,使其与传统股票型基金的相关度较低。
此前,主流的量化投资多为量化多因子模型和统计套利模型,这类模型在2007年达到了顶峰。当时,华尔街很多基金使用的量化模型高度相似,以2007年8月的“量化实效”为触发点,某只基金清仓时,触发了类似的基金大幅回撤,从而引发了量化踩踏事件。事实上,同质化的投资,由于有后续资金持续涌入,短期会产生看似很好的收益,但是一旦发生行情反转,集体亏损这样的极端事件难以避免,其结果就像我们刚刚经历的A股流动性危机那样。
正是经历过美国量化投资的兴起和挤兑,我对投资策略的差异性非常重视,只有选到独立研发的,与主流模型有差异的阿尔法,才能保证策略的可持续性。而基于大数据的分析框架,使我们的数据源更独特,策略体系更为稳健,与传统投资方式选出的股票相关度低。在中欧量化策略组中,我们坚持追求“独立研发的、高胜率的”的投资方法。
中国证券报:为什么选择到中欧基金发展自己的事业?目前量化投资策略组的团队构建情况如何?
曲径:我很喜欢中欧基金的合伙人文化。中欧基金平等、开放的风格,极大提高了内部的协同效率,给传统基金行业注入了创业的精神。作为量化投资团队,我们的基础工作依赖IT技术部门和产品设计部门的协同支持,中欧基金效率之高,对我来说是个惊喜。从我个人的角度来说,中欧基金一致的合伙人愿景,提升了团队的效益,最小化公司内部损耗;而市场化的激励机制保证了投资团队的稳定性,将投资团队与客户利益一致化,才能持续为投资人提供价值。
具体团队方面,量化策略组和其他策略组不同,我们本质上是一个工程师团队。每一个人都有数学建模能力,编程能力,对数字敏锐,热爱数据分析。目前,团队由三个小组构成:大数据核心研究、投资组合构建、算法交易执行。这三大支柱是我们构建量化模型的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16