
大数据打造高效“机器选股”时代_数据分析师考试
曲径,美国卡内基梅隆大学计算金融硕士,9年证券从业经验。历任中信证券[-2.61% 资金 研报](600030,股吧)另类投资业务线高级副总裁,美国千禧年对冲基金量化投资高级研究员及副总裁。2015年3月加入中欧基金,现任中欧基金量化策略组投资总监。
A股6月中旬以来的剧烈波动,并没有影响曲径的投资节奏。相反,作为中欧基金量化策略组的负责人,曲径却透过A股市场的大幅波动,看到了量化投资的新机遇。
“目前A股的波动率远远高于发达国家的股票市场,市场的非有效性更加明显。很多量化策略的本质是为市场注入流动性,A股的现状比较适合这类策略的发挥。”曲径说,“基于A股的量化对冲产品,提供了收益率介于固定收益和股票投资之间的投资品种,丰富了投资人的资产配置范围,有可能吸引更多追求中低风险的资金流入市场。同时,伴随着大数据时代的来临,量化选股的手段趋于多元化,利用‘机器选股’更加有效,这也会显著提升收益的稳定性。”对于大数据时代的投资逻辑,曲径有着独到的见解。
中国证券报:大数据时代来临,你认为大数据对A股市场投资会产生怎样的影响?
曲径:随着计算机运算速度的大幅提升,以及分布式计算的技术推广,使得基于大数据的投资成为可能。
通过整合多元数据,包括网络用户行为数据,舆情信息的扩散与信息影响的追踪,零售消费的大数据整合等,深入变革传统的股票投资行为。例如,通过互联网用户的数据分析,消费者对地产门户网站的访问行为,以及特定楼盘主页的访问热度,我们可以预估整体地产行业销售的趋势,这种通过大数据得到的预测,要比官方住宅销售的事后统计更有前瞻性和预测性。量化投资的基础是信息获取和信息处理。通过这些有效信息的获取,我们在股票投资上就可以领先一步。由此可见,在未来投资中,数据的作用将尤其重要。
中国证券报:作为资深量化投资人,你会通过怎样的投资逻辑来把握大数据时代的机遇?
曲径:大数据的应用,使机器学习选股成为未来趋势。量化选股是基于大数定律的投资方式,如果选股模型的预期胜率较高,在样本量足够大且投资分散的情况下,最终的投资效果,将很接近预测的胜率,获得盈利。
在大数据时代的量化投资具有一些明显的特征。例如,需要整合海量数据,以此挖掘多元化的交易机会。金融工程师通过构建数学模型,使其选股的方法具有可复制、可持续的特性。同时,通过优化且分散的投资操作,量化产品有效地规避了个股风险,使其与传统股票型基金的相关度较低。
此前,主流的量化投资多为量化多因子模型和统计套利模型,这类模型在2007年达到了顶峰。当时,华尔街很多基金使用的量化模型高度相似,以2007年8月的“量化实效”为触发点,某只基金清仓时,触发了类似的基金大幅回撤,从而引发了量化踩踏事件。事实上,同质化的投资,由于有后续资金持续涌入,短期会产生看似很好的收益,但是一旦发生行情反转,集体亏损这样的极端事件难以避免,其结果就像我们刚刚经历的A股流动性危机那样。
正是经历过美国量化投资的兴起和挤兑,我对投资策略的差异性非常重视,只有选到独立研发的,与主流模型有差异的阿尔法,才能保证策略的可持续性。而基于大数据的分析框架,使我们的数据源更独特,策略体系更为稳健,与传统投资方式选出的股票相关度低。在中欧量化策略组中,我们坚持追求“独立研发的、高胜率的”的投资方法。
中国证券报:为什么选择到中欧基金发展自己的事业?目前量化投资策略组的团队构建情况如何?
曲径:我很喜欢中欧基金的合伙人文化。中欧基金平等、开放的风格,极大提高了内部的协同效率,给传统基金行业注入了创业的精神。作为量化投资团队,我们的基础工作依赖IT技术部门和产品设计部门的协同支持,中欧基金效率之高,对我来说是个惊喜。从我个人的角度来说,中欧基金一致的合伙人愿景,提升了团队的效益,最小化公司内部损耗;而市场化的激励机制保证了投资团队的稳定性,将投资团队与客户利益一致化,才能持续为投资人提供价值。
具体团队方面,量化策略组和其他策略组不同,我们本质上是一个工程师团队。每一个人都有数学建模能力,编程能力,对数字敏锐,热爱数据分析。目前,团队由三个小组构成:大数据核心研究、投资组合构建、算法交易执行。这三大支柱是我们构建量化模型的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01