
大数据为信息安全赋予新的逻辑思维_数据分析师考试
信息工业技术的发展,催生了梦想的诞生与实现。一直以来,人类都希望机器能够具有人类智慧高效地完成工作,而这样的愿望,今天已经延伸至信息安全。 什么叫具有人类逻辑的信息安全?某位员工已经出差到外地,其账号却在公司办公室中登录内网访问重要资料,作为一名网络管理人员,当你知道这一切的时候首先会想到:这名员工的账号被盗了,公司的商业机密正在被窃取。之所以得出这样的结论,是由于按照正常的逻辑判断,将“出差”与“本地访问IP地址”联系在一起,在情理上是矛盾的。我们希望,机器也能够如同人类一般进行“逻辑思维”。结合大数据技术,今天这种智慧型的解决方案已经成为下一代信息技术的发展趋势。
大数据,信息安全分水岭
大数据技术在今天已经成型并已经运用多年。在国外,不仅思科和IBM这样的传统巨头在进行相关研发,一些新的企业,如Fireeye、Splunk等,也都凭借大数据在IT业界暂露头角。 环顾国内,很多公司也在进行大数据相关的研究并取得相当成果,但大部分都在应用分析方面,在信息安全分析方面却是新生事物,之所以新,是因为它引入了“列式数据模型”,弥补了传统“行式数据模型”的分析不足,这为信息安全的数据处理、数据分析提供了新的逻辑思维、新的分析角度,带来了新的安全价值。
在这些公司中,包括杭州合众信息在内的一些领先公司正走在这样趋势的最前沿。“言而优则唱”,长期的传统数据交换、数据安全分析实践使得这些公司在大数据处理、大数据安全分析方面具有先天优势。来自杭州合众信息的官方数据称,其与大数据处理相关的实时数据同步系统(RDS)、数据集成系统(ETL)、大数据一体化平台(UniOne)、大数据分布式全文数据库系统、大数据应用分析系统、综合安全审计系统等已经在住房和城乡建设部、工商总局、公安部、浙江公安等项目中有着不同程度的广泛应用,取得了极佳的社会价值。 信息安全已经上升为国家战略,信息安全应用环境也正发生着革命性的变化,强劲的驱动着这些传统的安全公司痴迷于大数据,希望利用大数据技术对传统信息安全赋予新的逻辑思维。
于是,基于大数据的信息安全,这个综合了多项技术的新兴事物应运而生,如雨后春笋。纵观这些公司,但凡能崭露头角的,其不仅需要有信息安全开发经验,需要对数据采集、处理、分析、应用等有较深的理解,更需要企业有较深的、长期的业务和应用背景来构建大数据的整体逻辑。相信这一些安全企业可以借助大数据扬帆起航,开启安全市场新篇章,将经验拓展到更为广泛的应用领域。 大数据,业务的开发需要具备多方面的业务储备。
数据处理能力
数据处理是数据挖掘和分析的前道程序。数据处理的目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取对于特定的人群有价值、有意义的数据。
数据分析能力
由于事务型数据和决策支持型数据的处理性能不同,需将决策支持型数据处理从事务型数据处理中分离出来,再从事务型数据库中导入数据仓库,继而采用OLAP(联机分析处理)工具、数据挖掘工具等进行分析、智能决策,提高决策的科学性及完善各种管理流程。
大数据,受到资本市场追捧
直到今天,Gartner的态度依然没改变。在Gartner研究副总裁Anton Chuvakin近期撰写的博客文章中,尽管其依然承认基于大数据的安全技术具有良好的发展态势,但是由于复杂度太高,“95%的企业还未采用这一技术”。
布局未来,这是对当前着眼大数据技术的信息安全公司最为可靠的描述。实际上,一直在进行产业萌芽投资的资本市场,对于大数据领域一直持以认可态度。成立于2004年的Fireeye,在2013年上市后首日股价大涨80%。业内普遍认为,其在2011年前后转向APT防御与大数据方向,这一战略极大地推动了公司的发展。在国内,机构与投资人都对大数据保持着持续关注。光大证券分析认为,国内公司在大数据领域的机会在于对细分行业市场的理解。实际上,这同实际产业状况不谋而合。以合众信息为例,除了主营信息安全业务以外,其另一项重点业务――大数据的分析和处理所瞄准的就是政府行业。
合众信息的资料显示,其所提供的政府大数据服务,指的是服务于各个政府部门且根据部门业务需求搭建的大数据平台。平台不但提供大规模云平台技术支持、维护管理,还会根据数据特点组织大数据模型,提供满足业务实战要求的数据集成处理、应用开发集成。而整套系统的成功部署,已经为客户带了客观的经济效益。 大数据,似乎这是一个听起来已经被重复了无数次的老概念。
但是,其所承载的是人们对于信息技术的向往与憧憬。这种憧憬的实现,毫无疑问是一个漫长且艰辛的过程。不过,我们相信,在逻辑思维的道路上的那群人会坚定不移地走下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16