
云计算与“大数据”的强强联合_数据分析师考试
半个世纪信息技术的发展,主要解决的是云计算中“结构性”数据的存储、处理与应用。“结构性”数据的特征有如你到银行去存取款,银行的计算机系统记录着你的名字,在名字之后是你存取款的数量、时间、类型等信息。这些数据的特征是“逻辑性强”,每个“因”都有“果”。 然而现实社会中大量数据事实上没有“显现性”的因果关系,如一个时刻的交通堵塞、天气状态、人的状态(心理与物理)等,它的特征是随时、海量与弹性,如一个突变天气分析包含会有几百个PB(Petabyte,1Petabyte=1024TB)数据。而一个社会事件如乔布斯去世瞬间所产生在互联网上的数据(微博、纪念、文章、视频等)也是突然暴发出来。
传统的计算机设计与软件都是以解决“结构性”数据为主。对这一类新型的“非结构”要求一种新的计算架构。互联网时代,尤其是社交网络、电子商务与移动通讯把人类社会带入一个以“PB”为单位的结构与非结构数据信息的新时代,它就是“大数据(BigData)”时代。 大数据的企业与技术 一个大规模生产、分享、应用数据的时代正在开启,我们每个人都成为了数据的创造者和使用者,微博、社交网络都是最好的例子。 工业革命以后,书籍等以文字为载体的知识大约每十年可以翻一番;1970年以后,知识大约每三年就可以翻一番;如今,全球信息总量每两年就可以翻一番;2010年互联网的数据量,比之前所有年份的总和还要多。
现在,人类每天可以产生数以PB的数据,从日志、微博、分享照片、传送视频,多种格式的数据实时、不断地更新。在医疗卫生、地理信息、电子商务、影视娱乐等行业,每天也都在创造着大量的数据。 数据正在成为从工业经济向知识经济转变的重要特征,成为新时代最关键的生产要素和产品形态。 代表着大数据时代的如Apple、Facebook、Amazon等公司正成为这场变革的推动力量。同时新企业也层出不穷,比如2007年才成立的Dropbox公司,创始人不到27岁,估值已经超过40亿美元,这是一家提供文件备份及共享服务的公司,允许用户在不同平台和设备之间同步并共享文件,Dropbox用户数量超过2500万,每天存储的文件数量2亿多个,苹果公司曾出价8亿美元想收购它未成功。
值得一提的是,这家公司最早使用的也是Amazon的S3云计算平台,得以低成本迅速起步。Amazon云计算数据存储服务,原来只是为了利用闲置服务器资源,现在一年可以带来近10亿美元收入,并且供不应求。今年初,AmazonS3云存储服务存储文件是2620亿份,这个数字最近变成了5660亿份,翻了1倍还多。目前Amazon称自己的S3数据存储服务,担心的已经不是数据的存储成本,而是更加重要的数据处理的问题。
云计算中的大数据有几个核心要素,如数据在云端的集合与分享、个人数据的无缝连接(随时、随地、同步)以及数据的跟踪分析和挖掘。 源自雅虎的Hadoop这样大数据系统越来越重要,作为开源的分布式数据处理系统架构,Hadoop主要面向存储和处理成百上千TB直至PB级别的结构化、半结构化或非结构化的大数据。Hadoop提供的MapReduce能将大数据问题分解成多个子问题,将它们分配到成百上千个处理节点之上,再将结果汇集到一个小数据集当中,从而更容易分析得出最后的结果。 Hadoop已经成为AOL、Facebook、Twitter和Netflix这些公司大数据分析的主要解决方案。
比如像Facebook一天的数据要比很多大公司一年的数据还要多,他们通过Hadoop收集和存储每天生成的数百万的文件,使用开源ApacheHive数据仓库工具集中对这些数据进行分析。 OperaSolutions这样的创新公司提供的服务更加引人注目:客户将数据上传到Opera平台,Opera就会根据用户数据池里的相关“信号”进行分析,根据每个客户的个性化需求,Opera雇佣各行业的专家来帮助他们进行数据分析,OperaSolutions的年营业额已经超过1亿美元。 新的创业公司像MapR、Zettaset、Cloudera、HStreaming这些和Hadoop相关的大数据公司,在资本市场倍受青睐。它的快速成长将会成为下一个改变信息技术的力量。 大数据的经济意义 大数据为云计算大规模与分布式的计算能力提供了应用的空间,解决了传统计算机无法解决的问题。同时这个领域的计算标准与软件均刚刚起步,为全世界新型软、硬件及应用创新提供了前所未有的机会。
海量的数据需要足够存储来容纳它,快速、低廉价格、绿色的数据中心部署成为关键。最近一年多来,谷歌、Facebook、Rackspace等公司都在纷纷建设新一代的数据中心,大部分都采用更高效、节能、定制化的云服务器,用于大数据存储、挖掘和云计算业务。 数据中心正在成为新时代的“信息电厂”,成为知识经济的基础设施。从海量数据中提取有价值的信息,数据分析使数据变得更有意义,并将影响政府、金融、零售、娱乐、媒体等各个领域,带来革命性的变化。以投资Facebook而著名的风险投资机构AccelPartners表示:“大数据是信息技术未来发展的战略走向,将催生下一代价值数万亿美元的软件企业。”
大数据将丰富我们对世界的认识。从定量、结构的世界,到不确定、非结构的世界。这个转变,使我们得以了解真实信息,提高决策水平,当社会对自然的数据有较为完善、随时的分析能力时,我们对事件的把握及预测能力便增强。
以云计算为基础的信息存储、分享和挖掘手段为知识生产提供了工具,通过对大数据分析、预测会使得决策更为精准,这对现阶段的中国尤其重要。 中国有着庞大的人群和应用市场,复杂性高、充满变化,如此庞大的用户群体,使中国成为世界上最大数据的国家。解决这种由大规模数据引起的问题,探索以大数据为基础的解决方案,是中国产业升级,效率提高的重要手段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22