
人类进入数据化生存时代 大数据蕴含大价值_数据分析师考试
移动互联技术的普及,将每一个人都纳入到互联网之中,并随之产生海量的数据。那么,这些数据意味着什么,对人类有何价值?这就是当前计算机领域最热门的“大数据”研究。10月20日,中国计算机学会大数据专家委员会成立,在随后的“大数据”论坛上,与会嘉宾认为,人类已经进入了一个“数据化生存”的时代,“大数据”中蕴含着巨大的价值,并且已经在日常生活中发挥着潜移默化的作用。
据经济之声《天下财经》报道,“数据”是什么?数据就是资源,它像空气和水、石油和煤炭一样,就在你的周围自然而然的存在着,你每一次点击鼠标,每一次刷卡消费,其实就已经参与到了数据的生成,可以说,每一个人既是数字的生产者,也是数据的消费者。英国帝国理工学院教授、海量数据分析专家郭毅可就是这种理念的坚定支持者。
郭毅可:以前数据不是人类的资源,现在数据是一种自然资源,和水、油、气一样,没有数据不能生活,这就是数据。
其实,数据一直存在,但为什么现在人们会如此重视它?美国罗格斯-新泽西州立大学商学院教授熊晖认为,这是因为当前的技术手段为“大数据”的收集和分析提供了保障。
熊晖:现在这个大数据,我们第一次有了这么精细的观测手段,比如说,以前我们不可能知道每一个人的地理信息,现在我可以非常精细的知道你每时每刻在什么地方出现,然后就可以产生非常精细化的数据,可以用来描述人、社会和整个环境的行为,这些东西我们了解的更深了,可以帮助我们减少社会的复杂度。
今年3月,美国奥巴马政府宣布了“大数据研究和发展计划”,并设立了2亿美元的启动资金,希望增强收集海量数据、分析萃取信息的能力,认为这事关美国的国家安全和未来竞争力,鼓励大学培养下一代的“大数据科学家”。
如果抛开政府行为,“大数据”分析其实早已经在商业领域大显身手。金蝶国际软件集团首席科学家张良杰介绍,他们参与搭建的全国中小企业信息平台,上面汇集了4000万家企业,通过对这些企业海量数据的挖掘和分析,能够对经济运行状况做出准确的预警,有助于国家相关部门做出应对决策。此外,张良杰还举例说,在微观经济领域,“大数据”的作用也越发凸显。
张良杰:(美国一家公司)把天气预报的信息和数据,利用跟天气相关的大数据,在亚马逊的云平台上做处理,然后可以帮助农业的种植者能够很好地保障他们的收益。另外一个领域就是在企业的管理上,大数据可以帮助他们做决策。
在金融领域,“大数据分析”早已经成为一种流派,在美国华尔街,对冲基金、股票分析、高频数据交易等领域,数据分析师都是最抢手的人才;在中国,阿里巴巴旗下的金融业务,也开始利用电子商务数据来发放“信用贷款”,发展势头迅猛。
中科院虚拟经济与数据科学研究中心副主任石勇,是人民银行征信系统的建立者之一,他介绍,“征信系统”也是大数据的一种应用,是一个国家金融业务开展的基础。
石勇:在座的每一个人在银行做的任何事,包括在ATM上取钱,数据都在里面,现在各个商业银行都在用你们的信用评分(这个模型就是我们算出来的)来做贷款处理,这个重要性就不用讲了,美国引发次贷危机的三大指标之一就是信用评分,我们连信用评分都没有,怎么把经济工作搞好?
还有学者预测,谁拥有了数据以及对数据的发掘能力,谁就将占领下一个十年全球经济发展的制高点。但是目前,我国大数据应用刚刚起步,基于大数据的商业模式还在萌芽阶段,从需求来看,很多产业对大数据的使用还没有意识,而供给一方,由于技术和人才储备上的落后,也缺乏深厚的数据分析手段来支撑需求。
此外,在制度层面,中国工程院院士、中国计算机学会大数据专家委员会主任李国杰提醒,当前我国大量的基础数据掌握在政府部门手中,今后要想不输在起跑线上,政府部门就要有更开放的姿态分享手中的数据。
李国杰:政府部门的数据共享一直是个软肋,国外有数据公开法等法律的规定,政府采购的信息要共享等等,相对来说执行的比价好,而中国由于部门的色彩(比较重),这些大数据怎么共享利用这是要解决的大问题,也呼吁政府要尽快实现数据的共享,实现数据的开发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04