京公网安备 11010802034615号
经营许可证编号:京B2-20210330
虚拟化和云计算:大数据价值的左膀右臂
“滴答”一秒钟过去了。你知道在这一秒钟里面,互联网上发生了什么变化吗?大数据犹如一块大蛋糕,激发起人们投身未来的激情的同时,也给人们当头一棒:现有的架构体系并不足以支撑大数据时代。而在目前来看,发展成熟的虚拟化和当下红的发紫的云计算,似乎成了大数据价值实现的左膀右臂……
“滴答”一秒钟过去了,在互联网上,人们发送了290封电子邮件;亚马逊处理72.9笔订单;人们在Youtube上传时长达20分钟视频……这些,其实就是见证一种趋势:大数据。
大数据是一种大规模数据的管理和利用的商业模式和技术平台的泛指,它与传统的海量数据不同的是,它除了数据规模呈现几何级数增长的特征之外,还包括所有数据类型的采集、分类、处理、分析和展现等多个方面,从而最终实现从大数据挖掘潜在巨大价值的目的。
根据IDC的统计报告指出,这种大数据未来发展将会给数据存储和相关的应用服务带来显著增长。比如在存储领域,从2010年至2015年间,复合年度增长将达到61.4%。在中国方面,根据IDC《中国大数据技术与服务市场2012-2016年预测与分析》显示,该市场规模将会从2011年的7760万美元增长到2016年的6.17亿美元,未来5年的复合增长率达51.4%,市场规模增长近7倍。
值得注意的是,现有的技术架构并不能很好地切割、分享这么一块大蛋糕。在众多大数据解决方案中,Hadoop成为了人们实现大数据分析的首选,然而,它仍然离不开虚拟化和云计算技术和平台的支撑。发展成熟的虚拟化和有着广阔前景的云计算,将成为大数据价值实现的左膀右臂。
面对海量数据的增长,传统架构虽然能够进行扩充,但它却面临着不能实现水平横向扩展的局限性,传统的IT架构和数据处理方式无法有效地应对大数据环境。数据的存储、计算、管理、分析等节点都需要适应大数据需求的方案,同时也要满足性能上的扩展。因此,基于数据中心的IT基础设施,也必将从传统的数据中心迈向云数据中心转型。
云数据中心是云计算背景下新的业务需求和资源利用模式与数据中心的完美结合。云模式已成为企业利用数据中心平台应对大数据挑战的重要方式。根据IBM的数据报告,当前数据中心有85%的运算能力存在闲置,50%至60%的数据中心IT负载可以采用云计算技术。这些,其实挖掘大数据价值的解决方案对它们有着同样的诉求。
云计算为何会助力大数据挖掘价值呢?我们可以从以下三个方面来探讨:
一、云计算帮助大数据平台降低复杂性,简化运维,提升资源活性和利用效率
云计算通过基于网络的服务交付,将硬件等基础架构融合为无形的IT资源,并借助负载均衡、分布式计算、并行计算、虚拟化、网络存储和统一管理等技术手段,实现IT服务的无缝化、定制化和伸缩性交付。
二、云计算帮助云数据中心降低成本,有利于将更多资金投入到增值业务中
由于采用了大量的虚拟化技术和统一的跨平台管理,可以帮助运营商/企业用户节省大量的设施成本和软件许可费用。此外,云数据中心的资源利用率能够得到进一步提升,并且在负载均衡方面也有更出色的表现,从而最大化保护用户投资,实现产品服务生命周期内价值最大化。节约下来的资本则可以投放在大数据的前期采集(增加数据源和数据类型)、存储、处理、分析并最终实现决策参考等各个业务环节。
三、云计算可支撑基于大数据的灵活高效IT服务,满足多种个性化需求
云计算和大数据一样,都有基于分布式计算的应用。不过,大数据更多的是需要有集群带来的高性能计算和存储扩展(横向和纵向)。借助云计算的分布式系统和虚拟化灵活调配资源,可以帮助大数据的各项分析、处理、挖掘提供高效灵活的IT服务支撑,满足用户个性化/定制化大数据挖掘、分析需求。
很多企业IT应用虚拟化程度仅有20%-30%。但随着云计算的逐步成熟与落地,云数据中心也越来越被企业接受。当然,这种虚拟化在云数据中心中的应用也就更加广泛了。另一方面,并不是所有的企业都有足够的精力和能力去应对部署Hadoop带来的挑战(部署门槛和系统调优门槛),而且Name Node和Job tracker存在单点失效问题,Hive、HCatalog等非Hadoop核心模块也没有双机集群高可用性的保障,专有的Hadoop集群CPU利用率低,Hadoop和非Hadoop负载不能直接共享资源,等等。这一系列的问题,都给Hadoop的使用带来了诸多不便。
在这种情况下,引入虚拟化解决方案就成为了破解这些难题的“救命稻草”了。服务器虚拟化、甚至基于计算、网络、存储各个模块的全面虚拟化,有助于降低成本和提升集群系统的可用性和可靠性,避免Hadoop集群带来的昂贵成本负担,使得广大中型企业也可以实现大数据的分析和应用,而且也可以帮助提升大数据的服务价值。
另外一种情况是,基础设施的全面虚拟化,还可以顺应大数据几何级数增长的发展态势,从而从一开始就紧随业务/大数据价值挖掘的需求不断推进,提升大数据价值内涵。
编后语:
虚拟化和云计算,将为大数据价值的挖掘提供更富有灵活扩展、高效利用的技术支持。虽然大数据需要有更多的新技术来帮助实现,但早已发展成熟的虚拟化以及当下流行应用的云计算,将有助于简化大数据价值的挖掘和服务的提供,从而实现大数据的更快部署实施和惠及更多地区、行业用户的应用服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08