京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社交关系+大数据=?消费者洞察
社交关系+大数据=?
“大家还没搞清楚PC的时候,移动互联网来了,还没搞清楚移动互联网的时候,大数据来了。”
有个不太靠谱的命题:如何让赵本山和迈克尔乔丹搭上关系?其实很简单,通过分析两个人的社交圈子,兴趣爱好等,最终可以找出一条线路能让他们两个人认识,这就是隐藏其中的大数据魅力之一点点……
随着互联网的冲击,UGC(用户产生内容)不断发展,社交网络已经不断普及并深入人心,用户可以随时随地在网络上分享内容,由此产生了海量的用户数据。这些数据并不是我们想象中的那样冷冰冰、枯燥的数据,而是更加活生生、有趣的数据;这些数据不同于以往单纯的数字,它们声色结合、图文并茂。
比如,Facebook用户每天共享的东西超过40亿,Twitter每天处理的数据量超过3.4亿;而每分钟Tumblr博客作者会发布2.7万个新帖子,Instagram用户会共享3600张新照片……随着Facebook、Twitter、LinkedIn、微信等社交媒体的流行,对社交关系的数据挖掘成为近几年的一个技术热点。
玩的核心是消费者洞察
在一般商业前提下,社交大数据挖掘的目的,是投其消费者所好。
不可否认,一个正在改变我们的生活、工作和思维方式的新浪潮正悄悄来到我们身边,这或许就是大数据(Big Data)导致的一个还不可名状的时代。
当下,社交大数据正在对企业,甚至于一些行业带来深刻的变革。下面,让我们来细数一下吧!
首先,与传统的营销方式相比,利用大数据营销,从前期的曝光,中期的转化,到后期的购买行为都是可监测的。效果可评估是大数据带来的最实质性影响。其次,在社交环节,越来越多消费者通过社交媒体反馈自己对企业产品、品牌形象的看法,这个过程会产生许多有价值信息,甚至包括一些潜在的市场需求。对一个企业来说,这些信息不仅可能使他们调整原有产品,甚至催生新的商业模式。消费者洞察,是大数据的核心价值。第三,大数据对某些行业来讲,意义更加不同。比如电影行业,金融行业,大数据能够起到预估性、前瞻性作用,企业可以据此建立一些模型对消费者行为进行分析。
同时,这又是一个移动盛行的时代,与传统互联网相比,移动互联网时代更加强调“社交”和“互动”。人们随时随地可以和朋友问候交流、分享资讯,只要带上手机,整个社交圈也就装在口袋里。交互性增强带来的效果是,不但产品可以为用户带来效用,用户反过来也能为产品导入流量。一个网友如果在微博上发文夸赞一家餐厅,经由他的社交圈的转发和扩散,就将为这家餐厅带来更多的访客。这个特征,也为移动互联网时代的商业创新指出了一个方向,那就是基于用户身份的信息交互和社交应用。
当下,所有行业都在积极拥抱移动互联浪潮,当然金融业也无法作壁上观。唯有移动起来的金融,才具备在下一个周期继续参与竞争的生命力。这其中,应用社交化的趋势和大数据,将对金融行业带来更多新的机遇,并将使金融行业逐步移动化、社交化,产生新的具有移动互联网特点的金融模式。这种金融模式将具有成本低廉、便捷的特点,能够使人们不受时间和地点的限制享受金融服务。
总之,进入大数据时代,金融行业的客户信息、交易信息、资产信息、信用信息等数据经过有效采集和整理分析,将会成为具有价值的数据信息。内部数据结合外部数据将形成具有重要价值的数据资产,可以有效帮助金融企业进行精准营销,降低运营费用,提高欺诈管理水平,提高信用风险管理水评,为决策提供有效支持,同时帮助金融企业了解客户需求,开发出符合客户需要,具有创新精神的新产品。
未来社交关系与大数据还将在互联网贷款、购买保险、证券投资等发挥极大作用。金融和数据拥有天然的数据化基因,因为金融本身就是信息和数据,做金融的本质就是做信用。大数据技术提供的有据可查的信用数据,为构建互联网金融信用体系提供了保障。
什么时候隐私可以成为伪命题?
社交大数据掘金路上,隐私问题忡忡。当然,深度的社交大数据挖掘中最敏感的问题仍然是用户隐私的问题。社交网站从一诞生起就与这个问题相伴相生,随着大数据时代的到来,隐私问题显得越发重要。在未来掘金社交数据的道路上,一方面要为用户提供更加精准便捷的良好服务,另一方面也要注重对用户隐私的保护。只有符合用户需求和用户安全的商业利益,才能成为可持续的商业利益。
可见,移动互联网、社交网络、云计算、大数据等新技术的不断涌现,加剧了互联网与金融业在客户管理、风险控制、渠道建设、商业模式、战略等层面广泛的融合和创新,不难想象,在不久的将来,真正能带来改变的互联网金融一定是由深谙互联网思维,立足小额信用贷款服务,涉及海量用户,注重数据资产,耐心长远的公司所推动的。这有这样,才是符合大数据的趋势,才能拥有长期的核心竞争力。但不可否认,无论选择与社交网络进行品牌联合,还是借助丰富而强大的数据系统实现精准定向,亦或求同存异定制产品打通,社交关系与大数据的结合,不仅搅动了金融业,而且演变为整个商业社会乃至人情社会的制高点工具问题,即将催生真正的互联网与金融领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15