
大数据的价值如何体现_数据分析师考试
进入大数据时代,运营商应用大数据发展的驱动因素是什么,是否需要建立新型数据库? 刘伟光: 随着通信行业的竞争日益激烈,传统的语音和短信等主营收入的利润不断下滑,导致运营商必须找到新的利润增长点,同时有效控制运营成本,从而使自身可以在激烈竞争中立于不败之地。这也是为什么运营商把实现精准化营销和精细化运营提升到战略层次的重要原因。
此外,传统数据库技术已无法满足运营商对大数据充分利用的需求。新型数据库应该具备如下特点:首先应该采用支持大规模并行处理的分布式架构;其次,应该使用基于符合工业标准的开放硬件和系统平台,保证成本可控;第三,随着开源技术不断成熟,创新速度快,新型数据库平台应该易于与新的开源技术进行融合;第四,新的数据库平台应该可以实现与Hadoop平台的无缝集成,实现跨结构化、半结构化、非结构化海量数据的混合分析能力。 卢东明: 运营商目前试图做新型数据库,但是不太现实,首先数据库公司一直以来都是很稳定的几家,需要长期积淀。
其次,大数据不是取代以前的技术,而是混合补充使用,不是新型数据库出来后,就完全替代传统数据库从而大规模使用。数据库是核心、稳定的技术,大数据是开源的软件技术,运营商还是会选择使用相对成熟的软件。 《通信世界周刊》: 大数据今年以来得到格外关注,目前发展状况如何? 卢东明: 大数据在运营商的业务中早就有应用,目前在各个省都得到普遍应用了。大数据这个词目前有些炒作成分,它和以前的数据库不是完全脱节的,是对数据库的延伸。大数据是个现象,是数据库的另一个形态,不是否定、颠覆之前的数据库形态。
目前做大数据的厂商依然是以前那几家数据厂商,不同的产品解决不同的问题。在中国电信行业,从数据量和应用角度来看处于世界领先地位,这是由于电信用户多、规模大,电信业遇到的问题和挑战比较大,解决方案难度高。 刘伟光: 目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求推出了很多新的大数据实时分析的项目,相信未来的两到三年这个市场将会成倍增长,甚至会到达我们今天不能预期的数量。 需要分析共享大数据的管理工具 《通信世界周刊》: IT企业如何依托大数据为运营商提供管理工具,提升运营效率? 刘伟光: 实现各部门的紧密协作永远都是提升运营效率的不二法门。而IT企业应该为运营商提供实现紧密协作、分析、共享大数据的管理工具,来达成提升运营效率的目标。
此外,大数据时代,IT企业仅仅为运营商提供分析平台、分析工具是不够的。这是因为运营商虽然很了解业务和需求,但普遍缺乏数学建模能力,因此很难利用好这些平台,使其发挥最大效益。所以,如何利用这些平台、系统和数据实现科学建模,同样是提升运营效率的关键所在。 武新: 运营商要解决数据处理效率问题,现在的数据用以前的系统处理需要一天一夜,而应用大数据技术处理可以一个小时完成。在大数据平台,应用云技术,通过集群的方式,几十台服务器同时工作,并进行压缩数据来节省空间。
目前大数据主要是针对结构化数据的应用,用户上哪个网,停留多长时间,通过分析都可做相应的分析结果推送给相关部门。除了对用户上网行为分析,还有网络使用情况、网络设备情况和用户使用手机类型分析。而对非结构化的数据,如视频和图片,目前分析得还较少。 《通信世界周刊》: 大数据具体应用于运营商的哪些业务中,有哪些成功的应用和案例? 卢东明: 大数据主要应用在运营商的“信令”系统分析上,由于其数据量非常大,比“话单”分析的挑战大很多。移动互联网发展起来之后,运营商开始关注大数据,进行“用户行为分析”,根据人群分析做精准营销,推荐流量套餐。
此外,运营商提供IDC服务,通过“云”中心的方式为互联网企业提供服务。 武新: 运营商从最近两三年开始,感受到这方面的压力,开始寻求解决方案。中国移动“信令”分析系统项目对海量数据进行分析和挖掘;中国联通对“话单”数据进行用户行为分析。中国电信“新一代数据库”产品正在测试中,通过精分系统,进行精准营销。此外,在运营商专网也已应用大数据。运营商目前仍处于测试探索中,通过几种方法针对不同的应用进行测试、筛选。
目前运营商的相关项目有“流量分析”、“智能管道”和“新一代数据库”产品等,传统的数据库面对海量数据已经无法支撑,将来会慢慢被大数据代替掉。 要有开放的心态 《通信世界周刊》: 发展大数据需要解决哪些问题,关键点是什么? 卢东明: 由于数据分析要看存储效果,涉及到效率和速度。目前运营商应用大数据存在的问题是避免无限制的花钱。另一方面,运营商要和厂商合作,针对不同的业务类型和应用场景,采取不同的分析方法。此外,运营商要有开放的心态,因为大数据作为开源的软件也不是可以解决所有的问题的。 武新: 在数据处理上,运营商转型中不仅有技术上的问题,还需要经历一个时间阶段和过程。
此外,运营商要转变思维方式,其在数据分析上的经验不如互联网企业,这是方法论问题,关系到如何用数据做生意。运营商以前都是依托传统业务,海量数据的出现,使得行业即将洗牌,运营商不得不转型重视数据挖掘。 但运营商可以发挥自己的优势,首先,要分析用户行为的变化,由分析以前的语音用户转变为分析上网行为。其次,运营商有能力提供类似互联网公司的服务,如QQ聊天。
最后,运营商有专网资源,有自己的数据中心可以运维,但是目前这些优势还没有完全发挥出来,是因为还没把握透用户的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04