
大数据时代下工作的几点建议_数据分析师考试
近年来,伴随“物联网”、“云计算”和“大数据”等词汇进入公众视野,一个大数据时代正大踏步向我们走来。在这一背景下,我们应如何创新社会管理方式、做好群众工作,是我们面临的重大课题。
大数据时代给群众工作带来的影响
所谓“大数据”,是指所涉及的信息量规模巨大到无法通过目前主流软件在合理时间内达到撷取、管理、处理、并整理成为帮助企业和其他组织决策更积极目的的资讯。其具有四个特点(即4V):“巨量”(Volume)、“高速”(Velocity)、“多样”(Variety)、“价值”(Value)。运用大数据,会增加工作量和工作难度,也能让群众工作更加快捷、精准。这主要表现在:一是便于管理部门“摸清家底”;二是有利于优化流程、提高效率;三是让民众享受更加高效、公正、透明的服务;四是可以提前感知和预测事件苗头及发展走势。可以说,大数据为群众工作提供了强大技术手段,它将在很大程度上改变群众工作和社会管理思路:从“模糊管理”向“数据管理”转变,由“经验治理”向“科学治理”迈进,实现“智能社会”、“智慧城市”。
大数据时代群众工作面临的主要问题
数据意识薄弱。一些管理者数据意识比较淡薄,缺乏“用数据决策、凭数据施政”理念。
数据政出多门。由于缺乏统筹规划,不少应用系统之间没有统一的技术和数据标准,数据不能自动传递,缺乏有效的关联和共享,从而形成“数据孤岛”。
数据安全欠缺。利用云计算对海量数据资源进行整合,使其从分散变得集中,增加了数据存储的安全风险。 数据人才匮乏。大数据是一个综合性课题,需要不同层级的人才,当前在党政机关比较匮乏。
做好大数据时代群众工作的几点建议
在“教育”上下功夫,培养数据意识和数据素养,为大数据时代的群众工作提供坚实思想保障。随着信息技术的飞速发展,具备良好数据意识和数据素养,将成为党政干部做好大数据时代群众工作的关键。首先,要把大数据专业知识列入各级党政干部教育培训和年度考核;其次,举办各类讲座和学术报告,普及大数据知识;第三,利用报刊、广播、电视和网络等媒体开辟专栏,宣传相关知识。
在“整合”上下功夫,实现数据互联互通和充分共享,为大数据时代的群众工作提供一流技术平台。应对大数据时代群众工作的需要,消除信息孤岛,实现数据的互联互通和充分共享,建设统一技术平台,显得格外迫切。一要坚持统一领导、统一规划、统一标准、统一建设;二要遵循以“需求为导向,应用促发展”的工作思路,推进信息共享、互联、互通平台建设与应用同步建设;三要采用国际先进的,符合我国信息化建设发展方向的、标准的、跨平台的信息技术。
在“防范”上下功夫,保护数据安全和公民隐私,为大数据时代的群众工作提供可靠网络环境。我们在实施社会管理、做好群众工作时,要特别注重对数据安全和公民个人隐私的保护。第一,将个人信息保护纳入国家战略资源的保护和规划范畴,保护公民隐私;第二,加快个人隐私保护立法,加大对侵害隐私等行为的打击力度;第三,加强对隐私保护行政监管,建立保护隐私测评机制;第四,加强对隐私权的技术保护,利用技术手段来保障公民隐私安全和合法权益。
在“创新”上下功夫,加强人才队伍建设,为大数据时代的群众工作提供优质智力支撑。没有一流的人才队伍,迎接大数据时代、做好大数据时代群众工作将成为一句空话。因此,开发和培养一支大数据人才队伍,不断提高群众工作的能力势在必行。一要设立专门的数据管理岗位,建立政府“首席信息官”制度;二要委托高校、科研院所和国际知名企业,“订单式”培养人才;三是利用“聘任制”,不断吸引体制外的专业人才进入党政机关,为大数据时代的群众工作提供智力支持和人才保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16