
零售企业如何让大数据开花结果_数据分析师考试
互联网时代的到来,改变了整个消费市场,消费者的消费习惯也呈现出个性化、多样化的趋势,零售商也开始学习互联网思维,以消费者的需求为中心。就是在这样的背景下,大数据“火起来”了。要了解消费者的需求,就需要从消费者的习惯、兴趣、消费能力等行为中发现商机,大数据就是对这些行为的捕捉,大数据搜集的信息正是构成消费者图像描绘的要素。然而,无论是专业的大数据分析企业,还是零售商,它们对大数据的理解只停留在最浅显的技术表面,而对于大数据与零售业务的结合而是一知半解。
现状:很热 也很“浮躁”
传统零售企业与互联网企业联手,真正的意图都是要搭乘大数据快车。
邹东生介绍,近两年来,很多机构与企业都来找数据分析专业委员会合作,并且在日常的工作中,也经常遇到很多大小不一的企业在谈论、运用大数据。
大数据在零售行业也很“吃香”。近日,背靠腾讯的大众点评和百盛集团达成合作,用点评的2亿用户资源为线下商家导流;另外,阿里巴巴集团也启动了银泰商业的转型,阿里将利用其强大的消费者数据库,让实体商业从“坐商”转变为“行商”。传统零售企业与互联网企业联手,真正的意图都是要搭乘大数据快车。
但正是在这火热的市场中,也出现了“浮躁”的火苗。
身为数据分析专业委员会会长的邹东生每天都在与大数据打交道,近两年来,随着互联网时代的到来,他深刻体会到大数据的“火热”,因此,他带领自己的团队开始寻找一些成功案例,欲将其经验在行业内推广。然而,令人意想不到的是,邹东生找了很多机构,最终却并没有找到令他“感兴趣”的实例。这个结果让邹东生认识到,“大数据是很热,但是落地的项目、落地的案例还不多,大数据也很浮躁。”
邹东生介绍,社会上关于大数据的会议很多,诸如政府举办的会议,企业举办的会议,还有一些地方上的联盟举办的会议,形形色色。但是这些会议很多不是真正的分析人员——真正给企业带来价值的人组织的,而是技术流的人组织的。“(他们)在会议上讨论什么是分布式计算,平台、数据化的云、存储,动不动就是几百万元、几千万元甚至上亿元投资的产品,好像大数据是用不起的东西,是一个需要花很多钱才能构建的东西。”
但事实上,大数据对于企业来说真正的价值是与业务的结合,是落地与应用。并且,这种落地也并非完全依靠大量的资金来实现。
价值:将数据转化为业务
帮助企业赚钱,使企业平稳地有显见性地应用,这才是大数据带来的真实东西。
运用:先储备应用小数据
很多企业已经拥有自己的小数据,企业可以先从自己搜集的数据分析开始,一步步地接入大数据。
的确,大数据的落地很重要,但是零售企业应该如何实现大数据的落地呢?“对于企业来说,大数据其实并不遥远,事实上,很多企业已经拥有自己的小数据,企业可以先从自己搜集的数据分析开始,一步步地接入大数据。”邹东生认为。
邹东生介绍,很多敏感行业,尤其是零售行业拥有很多自己的内部存储,包括商品数据、消费者数据、供应商数据以及相互间的关联数据等,然而传统零售业企业并未充分利用这些数据。“很多零售商自己的小数据还没有用起来,小数据都能起到立竿见影的效果,如果不用,谈何大数据,谈何互联网+?”
因此,邹东生认为,数据分析引入得越早,其价值越能得以凸显,更何况将来引入大数据建设时,如果没有分析先导,构建数据平台时就无法理解这些数据,也无法根据数据建立企业决策模型。
银联智惠联合创始人龙凯也表示,企业应尽快把数据的价值发挥出来,在目前“诸侯割据”的阶段,应该先把自己的数据用起来,挖掘起来,把负债变成资产,把数据相关的人员储备起来,做好一切的准备。而如果等待数据价值真正爆发的时候,再去准备就晚了。
周庭锐在日常工作中也遇到了沈志勇提到的问题。周庭锐举例说,一个服装企业,拥有十万笔生产的数据以及铺装版型,但是这些数据都写在表格里,版型都是画出来的,周庭锐不得不做一个程序帮企业整理、清洁数据。“像这样的数据清洁是中国走上真正大数据应用的最大障碍。”
尽管目前很多行业都已经认识到大数据的重要性,但是却并没有有效地普及,周庭锐认为其中有三方面原因。一是投入很大;二是产出变现的疑虑;三是从无到有的可行性问题。“目前很多大数据应用模型都太"高大上",但事实上,大数据不是这样的,它要配备到很多中小企业才可以,不能太难太贵。企业也可以借助很多免费工具,比如PC平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01